一、引言
随着智能交通、智能停车场和高速公路收费系统的快速发展,车牌识别(License Plate Recognition,LPR)技术成为提升管理效率和安全的重要手段。自动识别车辆车牌信息,实现车辆自动计费、门禁控制和交通监控,极大地便利了人们生活。
传统车牌识别系统大多依赖图像处理和OCR技术,难以满足实时性和复杂环境下的鲁棒性需求。近年来,基于深度学习的目标检测技术大幅提升车牌检测准确率和速度,尤其是YOLO系列算法凭借其端到端、单阶段的特点,广泛应用于车牌检测领域。
本文将详细介绍如何基于YOLOv8实现一个停车场或高速收费口的车牌检测系统,并结合OCR完成车牌字符识别,最终构建一个带有UI界面的实时车牌识别演示系统。文中包括数据集推荐、模型训练、实时推理、UI设计以及完整代码,适合有一定深度学习基础的开发者快速落地。
二、技术背景及挑战
2.1 车牌识别系统组成
车牌识别通常包含两个核心步骤:
- 车牌检测:定位图像中车牌的具体位置,一般用目标检测算法实现。
- 车牌字符识别:对检测出的车牌区域进行字符分割和识别,通常采用OCR模型。
本篇博客聚焦于