MenuRecognizer — 基于YOLOv8的菜单菜品自动识别系统

一、引言

随着智能餐饮服务的发展,自动识别菜单中的菜品名称,提升点餐效率和用户体验,成为餐饮行业智能化的热点需求。传统的手动点餐或菜单翻译存在效率低、易出错等问题,而利用计算机视觉技术对菜单图片进行自动识别,则能显著提高点餐速度和准确性。

本文将介绍如何基于当前领先的目标检测模型YOLOv8,构建一个菜单菜品自动识别系统。系统不仅能准确检测并识别菜单上的菜品,还配有简洁的UI界面,用户通过拍照即可获得菜品名称列表。文章详细介绍数据集、模型训练、推理流程及UI设计,附带完整的代码实现,适合深度学习和计算机视觉开发者参考。


二、项目需求与设计目标

2.1 项目目标

  • 输入菜单照片,自动检测图片中的菜品名称
  • 支持多菜品同时识别,输出准确的识别结果列表
  • 友好的图形化用户界面,支持拍照上传或本地图片选择
  • 提供高效、准确、实时的识别效果

2.2 技术选型

<
技术组件 说明
YOLOv8 最新一代目标检测模型,速度快且准确
PyTorch 模型训练及推理框架
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值