一、引言
随着智能餐饮服务的发展,自动识别菜单中的菜品名称,提升点餐效率和用户体验,成为餐饮行业智能化的热点需求。传统的手动点餐或菜单翻译存在效率低、易出错等问题,而利用计算机视觉技术对菜单图片进行自动识别,则能显著提高点餐速度和准确性。
本文将介绍如何基于当前领先的目标检测模型YOLOv8,构建一个菜单菜品自动识别系统。系统不仅能准确检测并识别菜单上的菜品,还配有简洁的UI界面,用户通过拍照即可获得菜品名称列表。文章详细介绍数据集、模型训练、推理流程及UI设计,附带完整的代码实现,适合深度学习和计算机视觉开发者参考。
二、项目需求与设计目标
2.1 项目目标
- 输入菜单照片,自动检测图片中的菜品名称
- 支持多菜品同时识别,输出准确的识别结果列表
- 友好的图形化用户界面,支持拍照上传或本地图片选择
- 提供高效、准确、实时的识别效果
2.2 技术选型
技术组件 | 说明 |
---|---|
YOLOv8 | 最新一代目标检测模型,速度快且准确 |
PyTorch | 模型训练及推理框架 | <