1. 项目背景与意义
随着图书馆自动化管理的不断发展,传统的人工分类书籍方式效率低下、易出错,尤其是书籍数量庞大时更显得力不从心。自动识别图书封面并对书籍进行智能分类,能够极大提升图书馆管理效率,减少人工成本,并提供更便捷的检索体验。
近年来,深度学习视觉模型尤其是基于目标检测的YOLO系列,在图像识别领域表现卓越。YOLOv8作为最新版本,以其高精度和高速度成为许多应用首选。本项目基于YOLOv8实现图书封面识别系统,并结合用户友好的UI界面,完成书籍自动分类全过程。
2. 目标定义与挑战
目标:
- 利用YOLOv8检测并识别图书封面上的书名或类别标签
- 实现书籍自动分类功能
- 设计界面,实现实时封面识别与分类展示
挑战:
- 书籍封面风格多样,存在反光、遮挡、不同角度等复杂情况
- 数据集获取与标注成本较高
- 模型需要兼顾准确率与实时性
- UI界面需要友好且稳定
3. 数据集准备
3.1 参考数据集推荐
- Book-Cover D