1. 引言
医疗机器人作为现代医疗的重要辅助工具,视觉感知能力直接决定其操作的精准度与安全性。视觉辅助系统能够实现对手术器械、组织区域及操作环境的自动识别与定位,大幅提升机器人智能化水平。本文结合当前最先进的YOLOv8目标检测模型,设计并实现了一套医用机器人视觉辅助系统,并基于PyQt5构建交互式UI界面,完整展现了从数据准备、模型训练到推理应用的全过程,旨在为医疗机器人视觉研发提供参考与借鉴。
2. 医用机器人视觉辅助的背景与意义
- 提高手术精准度:实时识别手术器械和病变区域,辅助精细操作
- 保障手术安全性:避免误操作,提升机器人自主决策信心
- 减轻医生负担:视觉自动辅助,辅助医生判断和操作
- 促进机器人智能化:实现环境感知、任务规划与反馈控制
3. 计算机视觉与深度学习在医疗机器人的应用概述
近年来,深度学习特别是卷积神经网络(CNN)在医学影像分析、目标检测、分割等领域表现卓越。YOLO系列作为实时检测的代表,因其速度和精度兼具,成为医疗机器人视觉辅助的理想选择。典型应用包括:</