一、向量是什么?
从数学的角度看,向量是一个“有方向和大小的东西”,可以用数字坐标来描述。在计算机世界中,我们可以把向量简单地理解为一组“有意义的数字”,用来表示事物的特征。
比如,我们要描述一只鸟,可以说:
“它有红色羽毛。它会唱歌。它的大小和手掌差不多。”
这些信息就可以被转化成向量,比如:
[红色: 0.913, 唱歌: 0.823, 大小: 0.534]
每个数字代表一项特性,这样鸟的特性就被数字化了。
无论是鸟、图片还是一句话,都可以用向量来描述。这种“通用的数字化语言”让计算机能理解复杂事物,也更利于AI中复杂的算法进行处理。
二、向量能做什么?
向量除了有利于数学算法处理外,核心特点是能****表示事物之间的“相似性”。
比如你有两个水果的向量:
- 苹果:[红色: 0.92, 甜度: 0.83, 圆形: 0.78]
- 草莓:[红色: 0.85, 甜度: 0.75, 圆形: 0.62]
虽然苹果和草莓是不同的水果,但它们的向量很接近。这表明它们有相似的特性,比如颜色和甜度。但如果你把“老虎”表示成向量,则和苹果的向量就不接近。通过比较向量的“距离”,计算机能快速判断哪些事物是相关的。
如果事物是用自然语言或者图片描述,当然也就可以比较文本或图片之间的相似性。
三、向量相似与文本相似的区别
普通搜索(如传统的搜索引擎)主要依赖关键词匹配,直接比对查询文本和文档中是否包含相同的文本与词汇。
比如查询:“人工智能如何帮助医生?”,现在有两个文档:
文档1:“AI技术正在协助医生进行疾病诊断。”
文档2:“机器学习在医疗领域用于提升诊断的准确性。”
普通搜索(基于关键词匹配):
查询关键词:“人工智能”,“医生”
匹配情况:
-
文档1:包含“AI”(人工智能的缩写)和“医生”,匹配成功
-
文档2:没有明确出现“人工智能”或“医生”关键词,匹配失败
所以搜索结果是文档1相关,并排除了文档2。
语义搜索(基于向量相似):
语义搜索通过向量表示捕捉文档和查询的语义相关性:
查询向量:“人工智能如何帮助医生”的语义向量
匹配情况:
- 文档1:高度相关,语义表示与查询向量相近
- 文档2:虽然没有提到“人工智能”或“医生”,但“机器学习在医疗领域提升诊断准确性”的向量与查询向量接近(语义相似)
所以语义搜索结果是文档1最相关,文档2语义相近,排名第二。
四、向量如何比较相似性
向量的相似性通常通过计算向量之间的距离来比较。 距离越小,相似性越高。常用的算法比如余弦相似度来判断向量距离。
假设我们有两个文本的向量:
- 文本1:“AI帮助医生诊断疾病” → 向量为 [0.82, 0.61, 0.97]
- 文本2:“人工智能协助医疗诊断” → 向量为 [0.90, 0.73, 0.98]
计算余弦相似性,根据余弦相似度计算公式(不懂也没关系):
假设计算出相似度 = 0.99,非常接近1,说明两个文本的语义高度相似。
当然 ,在实际应用中,还有其他的相似度算法,可根据实际情况做选择。
五、那谁来负责计算向量?
答案是:嵌入模型。
**简单来说,嵌入模型是一种专门负责把复杂信息(比如文字、图片、音频)变成数字向量的工具。**比如你输入一句话:“我喜欢看电影。”嵌入模型会把这句话转化为一个向量:
[0.7, 0.2, 0.5, 0.9]
这些数字包含了这句话的核心意思,比如“喜欢”和“电影”是这句话的重点。
再比如给嵌入模型看一张狗的图片,它会分析图片的颜色、形状、轮廓等信息,生成一个向量:
[0.8, 0.6, 0.4, 0.7]
这些数字描述了图片的内容,比如“狗”“毛发”“背景”等。
为什么叫“嵌入”呢?“嵌入”这个词来源于数学,意思是把复杂的东西嵌套到一个更简单的空间中。嵌入模型就是把一段文字、一张图片,或者其他复杂的信息“压缩”成一组数字(向量),嵌入到计算机能够理解的世界里。嵌入模型就像是一个翻译官,把我们人类的数据“翻译”成计算机的语言。
六、谁来负责存储和比较向量?
答案是:向量数据库。
向量数据库是专门存储和管理向量的工具。传统数据库存储的是结构化数据(如姓名、年龄、地址等),而向量数据库存储的是“数字特性”数据,比如图片的向量、文档的向量等。
向量数据库的特点是能快速找到相似的向量。 比如你上传一张“日落”图片,系统会根据向量相似性从数据库中找出其他接近的向量,进而对应到相似照片。
常见的向量数据库有 Milvus、ChromDB 和 Pinecone等。
七、所以向量在哪里应用?
我们最熟知的是RAG应用中使用向量来查询相似资料:
由于RAG应用是一种“边查边答”的应用,比如你问RAG应用:“C-RAG的基本原理是什么” 它需要检索出相关的资料段落(比如C-RAG论文),然后根据这些资料生成答案。
这时候,向量派上了用场:
首先把知识库里的文档分段转化成向量。 比如:
- 段落1:[0.1, 0.7, 0.2]
- 段落2:[0.9, 0.1, 0.4]
- 段落3:[0.3, 0.8, 0.2]
然后,把问题“C-RAG的基本原理是什么”转化成一个向量。 比如:
[0.2, 0.8, 0.1] (只是示例,真实的向量通常是几百甚至几千维的)。
接着,比较它与段落向量之间的“距离”(比如余弦相似度)。 模型就能判断哪个段落最相关。
最后,大模型就可以使用最相关的段落来回答问题。
好比你在图书馆找书时,根据书的分类和关键词找到了最合适的参考书。而RAG本质上不就是“看着参考书回答问题”吗?
当然,除了在RAG应用中外,向量其实是贯穿整个大模型推理过程的重要角色。在大模型的推理计算过程中,输入输出其实都是以向量形式来进行的。毕竟,数值计算才是计算机擅长的工作。
八、向量有没有不足?
虽然向量很强大,但它也有一些不足:
- 高维计算成本高
向量通常是几百甚至几千维,计算相似性需要大量资源。
- 向量表达可能有误差
如果嵌入模型不好,生成的向量可能无法准确表达数据的特性。
- 向量数据库存储要求高
存储数百万甚至数十亿个高维向量,需要优化存储和检索效率。
向量是现代人工智能的核心工具,用数字化方式描述数据特性,让计算机能够理解和比较复杂信息。从大模型的推理到 RAG 技术的应用,向量技术无处不在,希望这篇文章让你对向量有了更加清晰的认识。
九、最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】