揭开RAG重排序(Rerankers)和两阶段检索(Two-Stage Retrieval)的神秘面纱

一、为什么需要重排序?

检索增强生成(Retrieval Augmented Generation,RAG)技术看似充满无限可能,但在实际应用中,许多人发现构建的RAG系统结果并不尽如人意。

尽管RAG相对容易入门,但要真正掌握其精髓却相当困难。实际上,建立一个有效的RAG系统远不止将文档存入向量数据库并叠加一个大语言模型那么简单。虽然这种方法有时会有效,但并非总能保证成功。

我们知道,RAG 通过在大量文本文档中进行语义搜索来工作,这些文档的数量可能达到数十亿。为了实现大规模搜索的快速响应,我们通常采用向量搜索技术。具体而言,就是将文本转化为向量后,放入一个向量空间内,再通过余弦相似度等度量标准来比较它们与查询向量的相似度。

向量搜索的前提是需要向量,这些向量通常将文本背后的意义压缩成768或1536维的形式,这一过程不可避免地会丢失一些信息。因此,我们常常会发现,即使是排名前三的文档,也可能遗漏了一些关键信息。

在此,我们关注的指标是召回率,即“我们检索到的相关文档的比例”。需要注意的是,召回率不考虑检索到的文档总数。

在这里插入图片描述

因此,理论上通过返回所有文档可以实现完美的召回率。然而,这在实际操作中是不可行的,因为大语言模型对可处理的文本量有限制,这个限制称为上下文窗口。

如果较低位置的文档包含了有助于大语言模型更好地形成回答的相关信息,该怎么办?一个简单的方法是增加返回的文档数量(即增加top_k值),并将它们全部传递给大语言模型。但是这样做有一定的条件:

第一,这样做的一个劣势,就是需要消耗更多的token,意味着成本的增加。

第二,尽管大模型拥有高达100K Token的巨大上下文窗口,理论上可以包含大量文档,但我们仍然不能返回所有文档并填满上下文窗口来提高召回率。

第三,当我们在上下文窗口中填充过多内容时,会降低大语言模型在该窗口中检索信息的能力。研究表明,当上下文窗口被过多Token填满时,大语言模型的回忆能力会受到影响。此外,过度填充上下文窗口还会使模型较难按指令执行,因此,这种做法是不可取的。

为了解决这一问题,我们可以通过检索尽可能多的文档来最大化检索召回率,然后通过尽量减少最终传递给大语言模型的文档数量。为此,我们重新排序检索到的文档,并只保留最相关的文档。

二、什么是重排序算法?

重排序模型(也称为Cross-Encoder)是一种能够针对查询和文档对输出相似度分数的模型。通过利用这些分数,我们可以根据文档与查询的相关性对它们进行重新排序。

一个包含两个阶段的检索系统通常在向量数据库(vector DB)阶段采用双编码器(bi-encoder,Bi-Encoder)或稀疏嵌入模型。搜索工程师长期以来在这种两阶段检索系统中使用重排序模型。第一阶段的模型(嵌入模型或检索器)负责从大数据集中提取一组相关文档。随后,第二阶段的模型(重排序器)对提取出的文档进行重新排序。

采用两阶段策略的原因在于,从大数据集中快速检索少量文档的速度远快于对大量文档进行重排序。简而言之,重排序器处理较慢,而检索器速度较快。我们将在后面详细解释其原因。

三、为何选择使用重排序器?

关键在于,重排序器的精确度远超过嵌入模型。

双编码器(bi-encoder)精度较低的根本原因在于,它必须将文档的所有潜在含义压缩成一个向量——这无疑导致了信息的丢失。此外,由于查询是在收到后才知道的,双编码器对查询的上下文一无所知(我们是在用户提出查询之前就已经创建了嵌入)。

而重排序器能够在大型Transformer中直接处理原始信息,这大大减少了信息丢失。由于重排序器是在用户提出查询时才运行,这让我们能够针对具体查询分析文档的含义,而非仅生成一个泛化的、平均化的含义。

重排序器避免了双编码器的信息丢失问题——但它也有代价,那就是时间。

在这里插入图片描述
双编码器模型将文档或查询的含义压缩成单一向量。值得注意的是,无论处理的是文档还是查询,双编码器的处理方式相同,都是在用户查询时进行。

使用双编码器和向量搜索时,所有繁重的Transformer计算都在创建初始向量时完成。这意味着,一旦用户发起查询,我们已经准备好了向量,接下来需要做的只是:

运行一个Transformer计算生成查询向量。

使用余弦相似度(或其他轻量度量)将查询向量与文档向量进行比较。

而对于重排序器,我们不进行任何预计算。相反,我们将查询和某个文档直接输入到Transformer中,进行完整的推理步骤,最终生成一个相似度分数。

重排序器通过一个完整的Transformer推理步骤,针对查询和单一文档生成一个相似度分数。请注意,这里的文档A实际上等同于我们的查询。

假设我们的系统有4000万条记录,使用像BERT这样的小型重排序模型在V100 GPU上运行,我们可能需要超过50小时来返回一个查询结果。而采用编码器模型和向量搜索,相同的查询结果可以在不到100毫秒的时间内完成。

四、重排序代码实现

现在我们了解了使用重新排序器进行两阶段检索背后的想法和原因,让我们看看如何实现它,首先,我们将设置我们的必备库:

!pip install -qU \`  `datasets==2.14.5 \`  `openai==0.28.1 \`  `pinecone-client==2.2.4 \`  `cohere==4.27

在设置检索管道之前,我们需要检索数据!我们将使用 Hugging Face Datasets 中的 jamescalam/ai-arxiv-chunked 数据集。该数据集包含 400 多篇关于 ML、NLP 和 LLMs 的 ArXiv 论文,包括 Llama 2、GPTQ 和 GPT-4 论文。

关键代码如下:

from datasets import load_dataset``   ``data = load_dataset("jamescalam/ai-arxiv-chunked", split="train")``data
import time``   ``index_name = "rerankers"``existing_indexes = [`    `index_info["name"] for index_info in pc.list_indexes()``]``   ``# check if index already exists (it shouldn't if this is first time)``if index_name not in existing_indexes:`    `# if does not exist, create index`    `pc.create_index(`        `index_name,`        `dimension=1536,  # dimensionality of ada 002`        `metric='dotproduct',`        `spec=spec`    `)`    `# wait for index to be initialized`    `while not pc.describe_index(index_name).status['ready']:`        `time.sleep(1)``   ``# connect to index``index = pc.Index(index_name)``time.sleep(1)``# view index stats``index.describe_index_stats()
def compare(query: str, top_k: int, top_n: int):`    `# first get vec search results`    `docs = get_docs(query, top_k=top_k)`    `i2doc = {docs[doc]: doc for doc in docs.keys()}`    `# rerank`    `rerank_docs = co.rerank(`        `query=query, documents=docs.keys(), top_n=top_n, model="rerank-english-v2.0"`    `)`    `original_docs = []`    `reranked_docs = []`    `# compare order change`    `for i, doc in enumerate(rerank_docs):`        `rerank_i = docs[doc.document["text"]]`        `print(str(i)+"\t->\t"+str(rerank_i))`        `if i != rerank_i:`            `reranked_docs.append(f"[{rerank_i}]\n"+doc.document["text"])`            `original_docs.append(f"[{i}]\n"+i2doc[i])`    `for orig, rerank in zip(original_docs, reranked_docs):`        `print("ORIGINAL:\n"+orig+"\n\nRERANKED:\n"+rerank+"\n\n---\n")

完整的代码:https://github.com/pinecone-io/examples/blob/master/learn/generation/better-rag/00-rerankers.ipynb

重新排名后,我们获得了更多相关信息。当然,这可以显着提高 RAG 的性能。这意味着我们最大化相关信息,同时最小化输入 LLM 的噪音。

重新排序是显着提高检索增强生成 (RAG) 或任何其他基于检索的管道中的召回性能的最简单方法之一。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 8
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值