01.引言
AlphaFold的出现为蛋白质结构预测带来了革命性进展,极大提升了蛋白质结构建模的速度和准确性。在小分子药物研发领域,蛋白质结构信息至关重要,因为小分子药物通常通过与靶标蛋白的特定位点结合来发挥作用。然而,蛋白质结构数据的获取传统上依赖于耗时费力的实验方法(如X射线晶体学和冷冻电镜)。AlphaFold为解决这一问题提供了新的解决方案,使得研究人员能够快速预测大量靶点的结构信息,从而加速多靶点药物开发。
在本文中,研究团队提出了一种多靶点生成模型PCMol,借助AlphaFold生成的蛋白质嵌入数据,为药物设计提供了强有力的支持。PCMol模型通过整合AlphaFold的蛋白质嵌入信息,与多靶点生成模型进行交互,以生成特定靶点的小分子药物。
图1: AlphaFold蛋白质嵌入的U-MAP图,用于训练和测试PCMol模型的靶标
02.AlphaFold的蛋白质结构预测在多靶点药物设计中的作用
AlphaFold模型是近年来蛋白质结构预测领域的一项重要进展。基于深度学习的AlphaFold模型通过分析大量蛋白质序列及其对应的三维结构,能够快速生成复杂蛋白质的高质量结构信息。AlphaFold不仅提升了蛋白质结构预测的效率,还打开了蛋白质嵌入信息在药物设计中的应用前景。
03.PCMol模型的构建与实现
3.1 蛋白质嵌入信息的生成
在PCMol模型中,蛋白质靶点的信息来自AlphaFold生成的嵌入表示。该嵌入表示捕获了蛋白质序列的空间结构信息,为后续的分子生成提供了结构性数据支持。PCMol模型将这种嵌入表示与生成式变换器模型相结合,使得模型能够在特定靶点上生成高度活性的小分子候选化合物。
3.2 多靶点生成式模型
PCMol采用生成式变换器模型,将AlphaFold的蛋白质嵌入信息作为输入条件,用于生成特定靶点的小分子药物。模型的核心在于将蛋白质的结构性数据转化为分子生成的条件,使其能够识别并适应不同靶点的特征,进而生成高效结合的小分子药物。这一设计能够显著提高生成分子的多样性与特异性,尤其适用于活性数据较为稀缺的靶标。
图2: PCMol 模型架构概述
04.应用实例:PCMol在多靶点药物发现中的表现
本文团队以一组目标靶点(包括一些G蛋白偶联受体)为例,展示了PCMol的实际应用效果。在这些靶点中,研究人员利用PCMol生成了一系列小分子候选药物,并通过虚拟筛选和分子对接对生成分子进行了评估。结果表明,PCMol生成的分子在结合活性和选择性方面表现出色,与现有方法相比具有更高的预测准确性和化学空间覆盖率。
图3: pChEMBL 的归一化密度
05.数据增强和嵌入模型的改进
PCMol模型在数据处理上采用了SMILES字符串的增强策略,使得稀缺的高活性分子数据能够被放大,优化了模型在低数据条件下的表现。同时,通过数据增强,PCMol模型实现了对蛋白质嵌入信息的更好适配,从而在处理数据不平衡问题时取得了良好的效果。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。