如今国内外的人工智能领域发展如火如荼,智能体(Agent)作为一个热门话题,正在吸引越来越多开发者的目光。
最近,Clauded的官方Anthropic 发布了一篇关于智能体(Agent)构建的博客推文,提出了一个引人深思的概念:AI 开发的未来,在于“Less is More”(少即是多)
那么,什么是智能体,如何理解“少即是多”这一原则?
何为智能体?
提到智能体(Agent),很多人可能第一反应就是“大语言模型(LLM)”。但事实上,智能体的定义要比 LLM 更为宽泛,且它的起源可以追溯到20世纪中期的哲学和科学思考。
1950年,图灵在《计算机器与智能》中提出了“高度智能有机体”的概念,并创立了著名的图灵测试,为后来的人工智能研究铺平了道路。
1972年,麻省理工学院的 Marvin Minsky 提出了“Agent”概念,并明确指出,AI Agent 不仅要能感知世界,还要具备推理和执行行动的能力。
智能体的核心,就是能够自主决策和行动,而不仅仅是执行预设任务。
Anthropic 在其最新发布的推文中,将 Agent 系统分为工作流(Workflows)和智能体(Agents)。
二者的关键区别在于,工作流是通过预定义的代码路径来执行任务,而智能体则能够动态调整自己的任务和工具使用,且具备更高的灵活性。
“Less is More”:简约而不简单的智能体设计
在开发智能体时,“简单至上”的原则贯穿始终。Anthropic 强调,开发智能体时不应盲目追求复杂性。正如在日常生活中,很多问题其实并不需要复杂的解决方案,我们应该从最简单的方式开始,逐步进行优化。
在实际开发中,智能体的构建模式分为两大类:工作流和智能体。不同的任务类型,决定了我们应该选择哪种方式。
工作流(Workflows):当任务可以清晰地分解成多个固定步骤时,使用工作流就足够了。工作流系统就像流水线,步骤清晰、可控。如果任务明确而简单,工作流无疑是更有效的选择。
智能体(Agents):当任务处理需要较高灵活性和自主决策的任务,比如,需要即时调整策略的任务,或者任务过程中不断变化的环境。智能体就像一个指挥官,能在执行过程中根据反馈调整自己的行为路径。这时候“智能体”就更适合。
其实,对于大多数应用来说,优化一下单大语言模型的调用,再结合一些检索和上下文的例子,通常就足够了。
就像人类平时解决问题一样,先用最简单的方法试试,不一定非要用复杂的工具。
如今,市面上有多种 Agent 框架,帮助开发者快速搭建和优化智能体系统。比如:
·LangGraph:作为 LangChain 的工具,它是一个功能强大的乐高套件,适合构建复杂的智能体系统。
·Amazon Bedrock:提供一整套构建智能体所需的工具和组件,像一个专业工具箱。
·Rivet:一个拖放式 GUI 工具,可以通过可视化的方式快速构建 LLM 工作流,降低了开发难度。
·Vellum:用于构建和测试复杂工作流的工具,适合需要高级测试和调优的场景。
这些框架工具的确简化了 LLM 调用、工具定义等基础任务,氮素,但同时也引入额外的抽象层,导致可能会模糊底层的提示和响应,使得调试更加困难。
Anthropic 提出,开发者应首先尝试直接调用 LLM API,避免过度依赖框架。框架和工具应该是提高效率的手段,而不是让开发者脱离对底层原理的掌控。
Anthropic:增强型 LLM是构建智能体系统的基础。
增强型 LLM 是通过检索、工具使用和记忆等功能扩展大语言模型的能力,使其能够主动选择工具、生成搜索查询并决定保留哪些信息。
在构建增强型 LLM 时,开发者可以利用 Model Context Protocol(MCP),一种允许大语言模型与外部工具生态系统集成的协议。这种简单的接口大大简化了开发流程,增强了 LLM 的功能性。
Anthropic 提出目前市面上已经有很多方法可以实现这些增强功能,但是他们最推荐的还是自家的上下文协议(Model Context Protocol,MCP),该协议允许开发者通过简单的客户端实现与不断增长的第三方工具生态系统集成。
小编贴心的给大家准备好了 MCP 的介绍:
Model Context Protocol 介绍:
https://www.anthropic.com/news/model-context-protocol
提示链(Prompt Chaining)
将任务分解为多个步骤,每个步骤由不同的 LLM 处理。如果任务能够轻松且清晰地分解为一系列固定的子任务,那么这个工作流将非常适用!它是在牺牲一些时效性的情况下,换取更高的准确性。
路由(Routing)
适用于对任务进行分类,将不同的输入引导到合适的处理流程。例如,将客户服务的不同类型问题(如一般问题、退款、技术支持)引导到不同的处理流程中。将简单/常见的问题路由到较小的模型(如 Claude 3.5 Haiku),将困难/不常见的问题路由到功能更强大的模型(如 Claude 3.5 Sonnet),以优化成本和速度。
并行化(Parallelization)
将任务分解为多个子任务,并同时进行处理。这种方式适用于那些可以并行执行的任务,能大幅提升处理速度和效果。
协调者-工作者模式(Orchestrator-workers)
在这种模式中,中央大语言模型(协调者)将任务分解并分配给多个模型(工作者),最后再整合所有工作者的结果。
这种模式适用于那些无法预先定义子任务的复杂任务或需要对多个文件进行复杂修改的编码。
AI 开发的未来,在于“Less is More”
Anthropic 总结了构建有效智能体的三个核心原则:简单、透明、精心设计
这篇推文的核心思想是:在 LLM 领域,成功并非取决于构建最复杂的系统,而是构建最适合需求的系统。
我们应该从简单的提示开始,通过全面的评估进行优化,只有当简单的解决方案不足以满足需求时,才考虑引入多步骤的 Agent 系统。
通过不断精简和优化,我们将能够创造出既高效又易于维护的智能体系统,从而推动人工智能向更高水平发展。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。