一文读懂推理模型和训练模型对GPU的不同要求

推理模型和训练模型对GPU的要求存在显著的不同,主要体现在计算能力、显存需求、带宽需求、功耗管理以及模型并行与分布式计算等方面。

计算能力

  • 训练模型:训练过程涉及大量的矩阵运算和梯度计算,因此需要GPU具备强大的计算能力。这主要体现在浮点运算性能上,尤其是FP16或TF32等混合精度下的计算能力。训练大模型(如GPT-3、GPT-4)通常需要多个GPU协同工作,并且要求GPU的计算能力越高越好。

  • 推理模型:推理时虽然也需要计算能力,但相较于训练时的计算负载要低得多。推理的重点在于高效地执行前向传播,而无需进行反向传播和梯度计算。因此,单个GPU通常可以满足推理需求,除非是高并发或超大规模的部署。

显存需求

  • 训练模型:训练过程需要大量显存,特别是对于大模型和大批量的训练数据。显存需要存储模型的参数、激活值、梯度、优化器状态等。显存不足时需要使用梯度累积、分布式训练或模型并行等技术来分摊显存压力。

  • 推理模型:大型深度学习模型(如GPT、BERT等)通常需要较大的显存来加载和运行。然而,对于小批量推理任务,一般只需要较少的显存。但如果是大批量推理或并发推理,显存需求也会很高。如果显存不足,可能需要频繁地将模型切换到CPU,这会显著降低推理速度。

带宽需求

  • 训练模型:训练过程中,数据需要在GPU和主存之间频繁交换,特别是在多GPU分布式训练场景下,GPU之间的通信(如通过NVLink或PCIe)需要高带宽以保持数据同步和梯度传输的效率。因此,带宽对训练影响较大。

  • 推理模型:推理对带宽的要求相对较低,因为推理过程中数据主要在GPU内部处理,只有在输入输出数据时才需要与主存或其他GPU通信。

功耗管理

  • 训练模型:训练大语言模型是一个长时间且高负载的过程,GPU需要长时间运行在高功率状态。因此,能耗和散热是训练阶段非常重要的考量因素。数据中心常常需要额外的冷却系统和电力供应来支持这种大规模训练。

  • 推理模型:推理过程通常更短暂且负载较低,GPU通常不会长期处于满负荷运行,因此能耗和散热压力相对较小。

模型分布式计算

  • 训练模型:训练大模型通常会使用分布式训练或模型并行,将模型参数和数据分布到多个GPU上协同工作。因此,GPU之间的同步和通信变得至关重要。

  • 推理模型:推理一般可以在单个GPU上完成,只有在非常大规模或高并发推理场景下才可能需要分布式推理,但这通常也是为了提高吞吐量或处理更大的输入数据。

结语

综上所述,训练模型对GPU的要求更侧重于强大的计算能力、足够的显存、高效的带宽、良好的功耗管理以及支持模型并行与分布式计算的能力;而推理模型则更关注响应速度和效率,对GPU的计算能力和显存要求相对较低,但在高并发场景下仍对带宽和显存有一定需求。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值