推荐5本学习LLM书籍

大模型基础

https://github.com/ZJU-LLMs/Foundations-of-LLMs

本书旨在为对大语言模型感兴趣的读者系统地讲解相关基础知识、介绍前沿技术。作者团队将认真听取开源社区以及广大专家学者的建议,持续进行月度更新,致力打造易读、严谨、有深度的大模型教材。并且,本书还将针对每章内容配备相关的Paper List,以跟踪相关技术的最新进展

动手学深度学习

https://github.com/d2l-ai/d2l-zh

《动手学深度学习 第二版》是一本不可多得的深度学习领域权威著作,其独特的实践导向与前沿内容设计,使其成为从入门到精通的理想选择。以下是推荐的核心理由:

1. 多框架支持,紧跟技术潮流

第二版全面升级,首次引入PyTorch、TensorFlow和MXNet三大主流框架的代码实现,读者可自由选择适配自身需求的工具链,灵活应对工业界与学术界的不同场景。例如,新增的PyTorch实现(如数据操作与模型训练)让代码更简洁直观,而TensorFlow的支持则便于工程部署。

2. 从理论到实践的闭环学习

不同于传统教材的“纸上谈兵”,本书通过Jupyter Notebook形式将数学推导、图示与可运行代码紧密结合。例如,第2章“数据操作”中,读者不仅能理解张量的广播机制,还能通过代码实现缺失值处理与数据预处理的全流程。书中更包含多个Kaggle比赛实战案例(如房价预测、图像分类),帮助学习者将理论落地为真实项目经验。

3. 内容全面且深度覆盖前沿技术

全书结构分为基础、现代技术与应用拓展三大部分,既涵盖线性回归、多层感知机等核心概念,又深入讲解Transformer、BERT、注意力机制等最新模型。新增的自然语言处理章节(如预训练与微调)和计算机视觉实战(如目标检测与语义分割),反映了深度学习领域的最新进展。

4. 零基础友好,教学资源丰富

作者李沐团队以“无需深度学习背景”为编写原则,从基础的Python编程与线性代数讲起,逐步引导读者掌握复杂模型。配套资源包括免费在线课程视频、课件、习题及社区讨论(如GitHub开源项目与B站教学视频),形成立体化学习生态。

5. 学术与工业界的双重认可

本书已被全球个国家所高校采用为教材,并长期位列深度学习畅销书榜单,其权威性得到学界广泛认可。同时,书中对硬件优化、分布式训练等工程问题的探讨(如多GPU计算与参数服务器),为工业级应用提供了宝贵参考。

推荐语示例

“无论是渴望入门的新手,还是寻求进阶的开发者,《动手学深度学习 第二版》都是你的理想之选!它以代码驱动学习,用PyTorch、TensorFlow等多框架打通理论与实践壁垒;从线性回归到Transformer,从Kaggle实战到工业部署,内容全面且紧跟前沿。李沐团队以深入浅出的笔触,将复杂模型拆解为可操作的步骤,配合丰富的在线资源,让深度学习不再遥不可及。这本书不仅是学习指南,更是通往AI未来的钥匙。

喜欢读纸质书籍的,可以点击购买纸质书籍。

大规模语言模型:从理论到实践

https://intro-llm.github.io/

《大规模语言模型:从理论到实践》是一本系统性与实战性兼具的权威指南,无论你是初探大语言模型的研究者,还是希望将前沿技术落地的工程师,这本书都能为你提供从理论根基到工业级实践的全方位洞见!

核心特色与推荐理由

  1. 系统性拆解大模型全生命周期 全书围绕大语言模型构建的四大核心阶段——预训练、有监督微调、奖励建模与强化学习展开,深入剖析每个环节的算法设计、数据需求与技术难点。例如,预训练阶段详解如何利用海量数据与分布式计算优化模型参数,强化学习阶段则探讨如何通过奖励机制提升生成质量,并结合DeepSpeed-Chat框架提供实践案例。这种结构化的内容设计,帮助读者建立对大模型技术栈的全局认知,而非零散知识点堆砌。

  2. 理论与实践并重,打通学术与工业壁垒 书中不仅涵盖Transformer架构、自注意力机制等理论基础,还结合HuggingFace、DeepSpeed、LangChain等工具链,提供可复现的代码实践。例如,LLaMA模型的分布式训练优化、基于LoRA的高效微调技术,以及多模态大语言模型的实现策略,均以代码示例与工程思考呈现。对于开发者而言,这种“理论+代码”的双轨教学能快速提升工程能力。

  3. 前沿技术与落地应用深度结合思维链提示(CoT)到检索增强生成(RAG),从智能代理开发到多模态模型训练,书中覆盖了当下最热门的应用场景。例如,第7章通过LangChain框架构建知识库问答系统,展示了如何将大模型与企业级工具链结合;而多模态章节则解析CLIP等模型的跨领域应用潜力,为商业化落地提供灵感158。

  4. 权威团队编写,资源丰富且开放 由复旦大学张奇教授领衔的团队撰写,内容融合了学术研究积累与工业实践经验,被中国科学院院士金力评价为“开启通用人工智能时代的指南”。更难得的是,该书以免费电子书形式发布,配套开源代码与数据集,降低了学习门槛。此外,书中还提供大量行业评估指标与伦理安全分析,助力读者应对实际部署中的挑战。

  5. 紧跟技术趋势,覆盖最新研究进展 书中不仅解析经典模型如GPT、BERT,还深入探讨指令微调、模型压缩、强化学习优化等前沿方向。例如,结合Logic-RL框架分析如何通过规则驱动的奖励机制提升模型推理能力,与近期研究揭示的“小数据激发大模型潜力”理念不谋而合。这种对技术动态的敏锐捕捉,确保内容始终站在行业最前沿。

推荐语

“从预训练的数据奥秘到强化学习的奖励博弈,从单模态文本生成到多模态智能体开发,《大规模语言模型:从理论到实践》以庖丁解牛般的深度,将大模型的黑箱变为可复用的蓝图。张奇教授团队用清晰的逻辑与鲜活的案例,架起了学术理论与工业落地的桥梁——无论你是想揭开ChatGPT的神秘面纱,还是渴望打造垂直领域的智能引擎,这本书都是你不可或缺的‘技术罗盘’。免费开源的诚意,更让知识无界共享!”

喜欢读纸质书籍的,可以点击购买纸质书籍。

动手实践大型语言模型

https://github.com/HandsOnLLM/Hands-On-Large-Language-Models

《Hands-On Large Language Models》是一本不可多得的实战指南,无论你是刚踏入AI领域的新手,还是希望深挖大型语言模型(LLMs)潜力的开发者,这本书都能为你提供从理论到实践的全方位洞见!

它以代码驱动为核心,通过丰富的Python示例和Jupyter Notebook实战,将Transformer架构、注意力机制等复杂技术拆解为可操作的步骤。书中不仅深入剖析了BERT、GPT、LLaMA等主流模型的内部原理,还结合多模态应用、检索增强生成(RAG)等前沿技术,展示了如何构建智能客服、语义搜索系统等实际项目。

特色亮点

  1. 从零到精通的路径设计:从基础的词嵌入、分词技术讲起,逐步过渡到微调策略与模型优化,覆盖预训练、提示工程(Prompt Engineering)及对比学习等关键环节,助你系统性掌握LLMs的核心技术。

  2. 实战与理论深度融合:书中包含大量工业级案例,如利用LangChain框架快速开发应用、通过RAG技术减少生成内容的“幻觉”问题,以及多模态模型(如CLIP、BLIP-2)的跨领域应用,真正实现“学以致用。

  3. 前沿技术与工程实践并重:不仅探讨了模型压缩、低秩适配等高效微调方法,还紧跟技术趋势,解析了语义搜索、生成模型优化等最新进展,为学术研究与工业部署提供双重参考。

无论是想构建智能对话系统、提升搜索算法,还是探索多模态AI的无限可能,这本书都将成为你不可或缺的“技术手册”。其通俗的讲解风格、详实的代码资源与清晰的图表辅助,让复杂模型触手可及,助你在AI浪潮中抢占先机!

推荐语

“从理解Transformer到构建语义搜索引擎,从微调模型到多模态创新,《Hands-On Large Language Models》以实战为矛,以前沿为盾,为你打开大型语言模型的魔法世界!无论你是开发者、研究者还是技术决策者,这本书都能用代码与案例,将LLMs的潜力转化为你的竞争力。”

动手学大模型Dive into LLMs

https://github.com/Lordog/dive-into-llms

《动手学大模型》系列编程实践教程,由上海交通大学2024年春季《人工智能安全技术》课程(NIS3353)讲义拓展而来(教师:张倬胜[1]),旨在提供大模型相关的入门编程参考。通过简单实践,帮助同学快速入门大模型,更好地开展课程设计或学术研究。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,我现在需要帮助用户了解如何学习和入门大型语言模型(LLM)。首先,用户可能对LLM完全没有基础,或者有一定的机器学习知识,但需要系统的指导。我需要先拆解学习路径,确保覆盖基础、理论和实践,同时结合现有的资源推荐。 首先,用户需要基础知识。他们可能不了解机器学习的基本概念,比如神经网络、深度学习框架。我应该推荐学习Python编程和PyTorch/TensorFlow,因为这些都是构建和训练模型的基础工具。同时,数学基础也很重要,线性代数、概率论这些课程是必须的。 接下来是理论学习。用户需要理解LLM的架构,比如Transformer模型。这部分需要详细解释自注意力机制,以及预训练和微调的区别。推荐经典论文如《Attention is All You Needed》可能会有帮助,但用户可能需要更易懂的资源,比如在线课程或书籍。 然后是实践部分。用户可能想动手运行或训练模型,但计算资源有限。这时候可以建议他们从Hugging Face这样的平台开始,使用预训练模型进行微调。同时,本地部署较小的模型,比如LLaMA或ChatGLM,可能更实际。还要提到使用Colab或Kaggle的免费资源,这样用户不需要自己购买昂贵的GPU。 进阶学习方面,用户可能需要了解更高级的主题,比如模型优化、分布式训练。这部分需要推荐一些深入的技术文档或课程,比如李沐的动手学深度学习课程,或者斯坦福的CS224n。同时,参与开源项目也是一个很好的学习方式,可以积累实际经验。 最后,资源推荐要具体。列出书籍、在线课程、论文和社区,方便用户查找。比如《自然语言处理入门》这样的中文书籍可能更适合初学者,而Hugging Face和OpenAI的文档则提供了实用的工具和案例。 用户可能还会有其他疑问,比如如何选择合适的学习资源,或者遇到技术难题时如何解决。因此,生成的相关问题需要覆盖这些方面,比如学习LLM需要哪些数学基础,如何优化模型性能,或者国内外的模型选择。这样用户可以根据自己的需求进一步探索。 总的来说,我需要确保回答结构清晰,逐步引导用户从基础到进阶,理论和实践结合,同时提供丰富的资源推荐和相关问题,帮助他们系统地学习LLM。</think>### 大型语言模型(LLM学习路径指南 #### 一、基础知识准备 1. **编程与工具** - 掌握Python编程语言,熟悉常用库(如NumPy、Pandas) - 学习深度学习框架:PyTorch或TensorFlow(推荐PyTorch,因其在学术界的广泛应用) - 熟悉Jupyter Notebook开发环境 2. **数学基础** - 线性代数:矩阵运算、特征值分解 - 概率论与统计:贝叶斯定理、概率分布 - 微积分:梯度下降、链式法则 3. **机器学习基础** - 理解监督学习与非监督学习 - 掌握神经网络基本原理(前向传播、反向传播) - 学习RNN、CNN等经典网络结构 #### 二、LLM核心理论 1. **Transformer架构** - 自注意力机制:计算过程可表示为 $$ \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$ 其中$Q$、$K$、$V$分别表示查询、键、值矩阵[^1] - 位置编码方法:正弦函数编码与可学习编码 2. **预训练范式** - 掩码语言建模(MLM):如BERT的预训练目标 - 自回归建模(Causal LM):如GPT系列模型 3. **关键技术创新** - 模型缩放法则(Scaling Laws) - 参数高效微调方法:LoRA、Prefix-tuning - 上下文学习(In-context Learning) #### 三、实践入门路径 1. **模型体验** - 使用Hugging Face Transformers库调用预训练模型: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("gpt2") model = AutoModelForCausalLM.from_pretrained("gpt2") ``` 2. **本地部署实践** - 部署轻量级模型(如ChatGLM-6B)的步骤: 1. 安装依赖:`pip install torch transformers` 2. 加载模型: ```python from transformers import AutoModel model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) ``` 3. **微调实战** - 使用LoRA微调案例: ```python from peft import LoraConfig, get_peft_model lora_config = LoraConfig(r=8, lora_alpha=32) model = get_peft_model(model, lora_config) ``` #### 四、进阶学习方向 1. **分布式训练** - 数据并行 vs 模型并行 - 混合精度训练(FP16/FP32) 2. **推理优化** - 量化技术:8-bit/4-bit量化 - 知识蒸馏:从大模型向小模型迁移知识 3. **领域应用** - 代码生成(如Codex) - 多模态融合(如Flamingo) #### 五、学习资源推荐 | 资源类型 | 推荐内容 | |---------|---------| | **书籍** | 《自然语言处理入门》(何晗)、《Deep Learning for NLP》 | | **课程** | 斯坦福CS224n、李沐《动手学深度学习》 | | **论文** | 《Attention is All You Need》《Language Models are Few-Shot Learners》 | | **社区** | Hugging Face文档、Papers With Code、AI研习社 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值