对于设计 AI 产品而言,了解技术演变的趋势非常重要。这样做有两个好处,第一是可以让你的产品更符合未来技术的能力,进而长久的存在下去,另外一个好处是,可以避免你的产品因为模型能力提升被覆盖掉。这一篇中,我将尝试对多Agent平台技术未来 5 年的演进做一个判断,希望可以给大家一个启发。
在这一篇中,我们主要讨论未来 5 年内多Agent平台的两大发展趋势:(1)多Agent 平台的技术架构演进,以及(2)模型能力的提升。
技术架构的演进
分布式与协作框架
多Agent架构正从简单的设置演变为更加分布式、分层和混合的框架,以协调大量Agent。近期的研究将这些架构分类为 扁平式(点对点)、分层式(树状监督)、团队式、社会式 或 混合式,每种架构在可扩展性、灵活性和效率上各有权衡。未来的平台可能会结合这些模式,使Agent能够根据不同任务进行自组织。新框架展示了如何将Agent组织成动态网络或专业化小组,以提升集体问题求解能力。随着系统规模扩大,这种分布式方法预计将增强系统的鲁棒性和性能。
Agent间通信的改进
高效的通信是多Agent协作的核心。当前研究正推动Agent间通信协议向更自适应、稳健且高效利用带宽的方向发展,特别是在Agent数量增长的情况下。关于基于 LLM 的多智能体系统(MAS)的研究强调,系统级设计(即Agent如何通信以及它们共享哪些目标)和内部通信策略必须进行优化,以实现真正的集体智能。
当前的趋势表明,自然语言正在被用于Agent之间的对话,使其能够以人类可理解的方式进行协商与协调。新兴研究表明,结构化消息传递、共享“黑板”记忆,甚至隐式信号都可以被利用,以减少误解并提高协作效率。在未来五年内,我们预计将出现标准化的通信框架,使异构Agent(可能采用不同的模型或承担不同的角色)能够更无缝地进行交流。这包括冲突解决和共识协议,使 AI Agent群体能够在实时决策中进行更高效的协调。
强化学习与自我优化系统
多智能体强化学习(MARL)将继续成为训练Agent群体,使其通过经验不断改进的关键技术。MARL 已经展现出在可扩展性和鲁棒性方面的优势,使Agent能够在共享环境中共同学习协调策略。
未来,研究人员正致力于使 MARL Agent在部署后变得更自适应和自我优化。一个值得关注的趋势是将 基于 LLM 的推理 整合到强化学习(RL)循环中——Agent可以在训练过程中交换信息或学习通信协议,以提升协作能力。例如,语言条件 MARL 正在被探索,使Agent能够发展出一种共享的“语言”来协调策略,结合深度强化学习(Deep RL)与类人通信的优势。
在未来五年内,我们预计会出现以下重要进展:
多智能体自博弈(Self-Play)技术:Agent通过相互对抗或协作来提升自身能力;
元学习(Meta-Learning):Agent学会优化自己的学习算法,提高学习效率;
终身学习(Lifelong Learning):Agent团队能够在多Agent环境中动态适应新任务。
这些自我优化能力将由将 MAS 视为一个不断进化的生态系统的新型架构所支持,可能引领我们迈向人工集体智能(Artificial Collective Intelligence),即Agent群体整体的学习能力超越个体能力的总和。
模型能力的提升
增强推理、自主性与适应性
未来的多Agent平台将具备更深层次的推理能力和更高的自主性。大型语言模型(LLMs)已被用于自主Agent的“大脑”,支持其执行复杂的规划和决策任务。将 LLM 与长期记忆和规划模块结合,可以打造出能够规划、记忆并进行类人适应的Agent。
例如,近期的生成式Agent实验表明,多个基于 LLM 的Agent在沙盒环境中可以自主模拟可信的社交行为(如仅凭初始提示就共同组织一场聚会),展现出涌现的协作能力与适应性。
在未来几年,我们将看到Agent在理解上下文、推理多步问题和动态调整行为方面的能力进一步提升。当前,LLM 驱动的Agent已经能够推理目标并做出情境决策,而这些能力将通过更优的认知架构进一步优化。
具体来说,以下技术将得到更广泛应用:
链式思维提示:增强推理能力,使Agent能够进行更复杂的逻辑推导;
逻辑推理增强:提升Agent在推理问题上的准确性;
外部工具调用:让Agent可以调用计算器、代码解释器等外部工具,以提升执行能力。
这些技术的结合将进一步提升多Agent系统的自主性,减少对人类干预的依赖,使Agent能够主动判断任务需求并协作完成任务。
多Agent系统中 LLM 的演进
大型语言模型(LLMs)自身也在不断发展,以更好地支持多Agent环境。当前趋势表明,与其使用单一的大型通用模型,更倾向于部署多个专门化的 LLM Agent进行交互。基于 LLM 的Agent协作使其能够解决单个模型难以独立完成的任务,利用多样化的专业知识和集体问题求解能力。
此外,研究人员正开始解决当前 LLM 在多Agent环境中的局限性,将Agent视为一种数字物种,可能需要新的训练方法。一个关键挑战是,通用 LLM 设计初衷并非针对多Agent交互,因此可能导致:
产生错误信息或不一致性(幻觉),这些错误会在Agent间级联放大;
缺乏共识构建机制,导致决策不稳定或Agent之间难以达成一致。
未来的发展方向可能包括专为多Agent协作优化的 LLM 变体或微调模型,提升其在与其他 AI 交互时的可靠性。例如,正在探索能考虑其他Agent观点、维护一致的共享世界状态的 LLM。
通过调整模型架构和训练方法,AI 研究社区正努力打造更加协作透明、团队意识更强、适应性更高的 AI “团队成员”。
微调、提示工程与Agent专精化
随着多Agent平台的成熟,我们正在看到越来越多的趋势聚焦于针对特定角色和任务对模型进行定制化。与“通用型”Agent不同,当前的发展方向是Agent专精化——每个Agent通过微调或提示配置,被设计为擅长完成某一特定职能,并在一个协调框架中协同工作。
近期的研究框架,如 AgentVerse 和 MetaGPT,就明确为不同Agent分配了不同角色(例如一个Agent担任规划者,一个担任编码者,另一个担任验证者),这种做法显著提升了系统的整体效率和输出质量。通过利用每个Agent的独特专长,整个系统能比单一的通用Agent更有效地解决问题。
这一策略在“对齐”方面也带来了优势:当每个Agent的职责明确、范围狭窄(通过微调或精心设计的提示词定义),它们的行为更可预测,也更易于监控。
我们预计未来会出现更强的提示工程技术,让开发者可以在无需重新训练模型的前提下,灵活地塑造Agent的行为特征(例如设定其个性、优先级、谈判风格等)。少样本提示和高级指令微调将实现即时专精化,使Agent能够根据任务需求快速切换角色。
此外,研究者也在探索Agent角色的自动分配方法——例如,2024 年的一项研究提出了一种“自动Agent生成”框架,可以在一个大任务中自动生成处理子任务的专用Agent。
总之,未来五年我们很可能会看到越来越多模块化、可定制的Agent设计,每个Agent都是经过微调或提示工程优化的专家型Agent,协同工作,各司其职,发挥所长。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。