研究背景
-
研究问题
研究了认知、情感和行为变量如何影响大学生的AI自我效能感。具体来说,研究了AI素养、对AI的兴趣、对AI的态度和AI使用如何共同作用于AI自我效能感。
-
研究难点
理解不同变量之间的复杂相互作用,识别不同的学生群体及其特征,以及设计包容性的AI教育策略。
-
相关工作
能力、焦虑和先前经验等因素会影响自我效能感(Gainor & Lent, 1998; Johnson, 2005),但这些研究大多集中在特定领域,如数学或科学,而非AI领域。
研究方法
这篇论文提出了一个路径模型,用于解决AI自我效能感的影响因素问题。
- 路径模型:首先,基于现有的教育理论,构建了一个路径模型,描述了AI素养、对AI的兴趣、对AI的态度和AI使用之间的关系。该模型假设AI使用和积极的对AI态度显著预测对AI的兴趣,而对AI的兴趣又与AI素养一起增强AI自我效能感。
-
高斯混合模型(GMM):其次,使用高斯混合模型(GMM)来识别具有独特认知、情感和行为特征的学生群体。GMM通过将数据建模为多个高斯分布的混合来表示数据集中的成分。
-
数据分析:使用Item Response Theory(IRT)分数调整项目难度和区分度,使用Pearson相关系数计算变量之间的相关性,使用路径分析验证路径模型,并使用GMM进行成分分析。
实验设计
-
数据收集
招募了来自美国、英国和德国的1465名本科生和研究生,通过Prolific平台进行在线调查。参与者自愿参与,完成调查后获得5.90美元的奖励。
-
样本选择
最终样本量为1465人,其中美国494人,英国499人,德国472人。参与者的平均年龄为28.4岁,51.0%为男性,46.4%为女性。
-
测量工具
使用经过验证的量表测量AI自我效能感、AI素养、对AI的兴趣、对AI的态度和AI使用。AI自我效能感量表包含8个项目,AI素养量表包含27个项目,对AI的兴趣量表包含5个项目,对AI的态度量表包含8个项目,AI使用量表包含2个项目。
结果与分析
-
相关性分析:AI兴趣与对AI的积极态度之间存在强正相关(0.65),AI使用与AI兴趣之间也存在强正相关(0.56)。对AI的积极态度与消极态度之间存在高负相关(-0.44),而AI素养与其他变量的相关性较弱。
-
路径分析:路径分析结果显示,对AI的积极态度显著正向影响AI兴趣(路径系数0.618),AI使用显著正向影响AI兴趣(路径系数0.434),AI兴趣显著正向影响AI自我效能感(路径系数0.245),AI素养也显著正向影响AI自我效能感(路径系数0.144)。
高斯混合模型:GMM分析识别出三个学生群体:“AI倡导者”、“谨慎的批评者”和“务实的观察者”。AI倡导者占47.78%,表现出高AI素养、高自我效能感、高兴趣和高积极态度,低消极态度和高AI使用。谨慎的批评者占20.82%,表现出低AI素养、低自我效能感、低兴趣和高消极态度,低AI使用。务实的观察者占31.19%,表现出大多数变量接近平均值,关系平衡且适度。
总体结论
这篇论文通过路径模型和高斯混合模型,揭示了AI素养、对AI的兴趣、对AI的态度和AI使用对AI自我效能感的影响。研究发现,对AI的积极态度和使用AI可以显著提高AI兴趣,进而增强AI自我效能感。此外,识别出三个不同的学生群体,强调了设计包容性AI教育策略的重要性。未来的研究应进一步探讨针对不同学生群体的定制化教育干预对其AI自我效能感的影响,并考察非西方文化背景下的文化因素。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。