本期推文的内容概要
在智能制造时代,工业设备一旦发生故障,可能导致数百万经济损失甚至安全事故。传统方法依赖人工经验或纯数据模型,但前者效率低,后者像“黑箱”难已解释。在这个转型和变革的时代,工业设备在制造业中发挥着举足轻重的作用。工业设备的结构变得越来越复杂,模块也越来越复杂。关键部件的失效不仅会导致重大经济损失,还会带来严重污染和灾难性事故的风险 。因此,工业设备的实时监测、诊断、预测和维护在保障生命、保护财产和保障国防安全方面具有巨大的理论研究和工程应用价值 。鉴于制造过程的复杂性和动态性质,工业设备故障表现出多种多样且不确定的特征。相关领域专家通过实际应用积累了丰富的工程经验和诊断知识。这些知识包括机器故障机制、故障特征、诊断规则等,统称为领域先验知识。这些知识的有效性已在众多工程案例中得到验证。
问题的背景
先验知识和深度学习模型(即 KDDD)的整合提供了一种可行的解决方案,有望解决与手动特征工程和深度学习模型的不稳定性相关的挑战 。
-
KDDD 方法有望提高工业设备故障诊断的精度。数据驱动的方法通常将故障识别限制为现有数据中的可识别特征。
-
KDDD 有望提高工业设备故障诊断的效率。在解决问题时有效利用数据的必要条件在于对其内在结构和支配原则的深刻理解。
方法的概述
IIoT 技术的快速发展和广泛采用导致了复杂系统的出现,其中组件故障可能会不可预测地发生,从而损害系统可靠性。虽然基于知识和数据驱动的方法在检测和定位组件故障方面很有效,但 KDDD 方法使 故障诊断模型能够获得更有针对性、更全面和更稳健的特征表示,从而有可能增强 故障诊断模型。这反过来又提高了模型的泛化能力并增强了可解释性。如图 2 所示:为了说明将先验知识与深度学习模型相结合的各个阶段。
我们将 KDDD 方法分为数据采集、预处理、特征融合、模型训练、标签预测和可解释模型。
(一)数据采集和标签预测
传感器数据的采集在 工业设备故障诊断中起着至关重要的作用,因为它直接反映了检测到的物体的状态 。通常,使用各种传感器、无线传感器网络或其他信息采集技术进行数据采集 。故障的类型和表现形式在不同方案中可能有所不同,因此收集故障相关信息的方法多种多样。因此,采用与先验知识一致的信息采集技术来获取与设备易发生故障组件特别相关的数据至关重要。这种方法不仅可以根据当地条件提高所收集数据的质量,还有助于避免不必要的成本。许多研究已经探讨了这些方面,如图 3 所示:
本文简要总结了不同工业设备易发生故障的组件和常用的监控信号。然而,在许多工业场景中,收集足够数量的标记数据,特别是标记的故障数据,是一项耗时、劳动密集型且通常不切实际的任务。这主要是因为工业设备通常根据基于时间或特定条件的定期维护程序得到良好维护。为了应对这一挑战,专家和研究人员探索了基于领域知识的数据生成技术或标签预测方法。例如,Gálvez et al. 采用一种由专家知识指导的基于物理的模型来生成运行到失效数据。然后将这些合成数据与真实数据相结合,以训练、验证和测试铁路供暖、通风和空调 (HVAC) 系统中故障诊断的 CNN。Brito等使用先验知识和少量真实数据生成合成数据,并对合成数据进行数据增强。在另一项研究中,设计了一种基于桥接标签的策略,利用领域知识作为关键环节将其整合到学习过程中。
(二)数据预处理和特征融合
基于知识的特征提取方法如图 4 所示:
以振动信号为例,采用了一系列手动工程特性,包括时域分析、频域分析和时频域分析。时域分析涉及统计特征、时间同步平均特征、时间序列回归模型、基于过滤器的方法、随机参数技术、盲源分离和其他技术,这些技术根据时间索引从原始数据中提取特征。频域分析包括局部平均分解、EMD、统计特征和其他方法,这些方法可以根据频率特征揭示信息。时频域分析包括短时傅里叶变换、小波分析、EMD、Hilbert-Huang 变换、Wigner-Ville 分布、局部平均分解、峰度和峰度图等技术,这些技术用于从非平稳波形信号中提取特征 。这些提取的特征随后被输入到分类模型中,例如支持向量机、k最近邻和人工神经网络。然而,这些手动特征提取方法需要广泛的领域专业知识,并且特征提取和选择的过程既耗时又费力。因此,手动特征提取不被认为是故障诊断的合适选择。
数据驱动的特征提取方法主要分为两类:1) 深度学习和 2) 深度迁移学习。深度学习方法主要包括 CNN、RNN、LSTM、AE、Stacked AE、VAE、DBN、GNN、ResNet 等。大多数基于深度学习的现有数据驱动特征提取方法都使用原始数据作为训练网络模型的输入。这些方法主要侧重于构建网络输入、设计深度学习架构和选择合适的超参数。智能特征提取技术旨在从原始数据中发现隐藏的特征,但其有效性在很大程度上取决于训练数据的可用性,并且分类结果在不同的作条件下可能会表现出不稳定 。
在数据预处理和特征提取阶段,集成领域知识和故障数据至关重要。此外,还可以缓解深度学习方法中经常观察到的不稳定结果。表 III 全面概述了现有的 KDDD 预处理技术和特征融合方法。
KDDD 数据预处理方法背后的基本原理是处理原始数据,同时结合先验知识以获得域一致或域无关的输入。
(三)模型训练
虽然 KDDD 数据预处理和特征融合方法增强了深度学习模型的收敛性,但特征和故障之间关系的建立,以及发现有价值的故障相关知识并将其整合到分类器训练中,仍未得到解决。仅仅将原始数据转换为替代表示形式并不能提供对故障机制的见解。因此,研究人员已经开始研究 KDDD 模型训练方法。根据表 IV 中概述的深度学习模型的特点,现有研究可分为以下四组。
- 构建 CNN 的卷积核:
考虑到旋转机械中的故障通常表现为基频或多频的脉冲信号,因此诊断部件的工作频率对故障诊断具有重要意义。有趣的是,从时域信号中提取特定频率分量是通过卷积实现的,这是 CNN中的一个基本作。
- 构建 GCN 的关联图:
在 GCN 中引入关联图可以提取数据关系,从而提高训练速度和模型性能,尤其是在关系建模的背景下。现有研究通常根据样本相似性或特征确定关联图。
- 构造变压器的注意力权重:
通过结合图注意力网络的概念,transformer 网络将查询和关键信息之间的点积替换为利用基于先验知识的学习权重向量的正向网络。
- 基于知识图谱的 DNN 优化:
现有的研究通常侧重于特定于单个组件的故障,而忽略了复杂或多组件系统。知识图谱提供了一种通过复杂关系表示知识的方法,从而解决了与工业流程相关的复杂性。因此,将知识图谱与 FD 模型集成可以优化故障信息,并为故障分析提供额外的视角。
(四)在实际工业应用中的挑战和潜在方向
KDDD 工业设备故障诊断方法已经取得了初步进展,但仍处于起步阶段。KDDD 技术在工业设备故障诊断中的有效和高效应用面临着复杂的因素,例如数据稀疏和异构、跨组织和非共享数据、完全未知的目标域数据以及受限和异构资源等。这些挑战主要体现在以下方面:
-
特征学习困难: KDDD 中的先验知识表示主要集中在旋转机械上,但缺乏对其他工业设备的研究关注。此外,现有方法严重依赖于多域同构特征空间和数据共享的假设,这在保护数据隐私的同时,从跨多个域的异构特征空间中精确提取与故障相关的特征并将其映射到同构空间带来了重大挑战。
-
域对齐难度:基于数据生成的域泛化旨在通过采用各种数据作技术来增加现有训练数据的多样性。这反过来又会导致数据量增加。表 VI 总结了各种数据生成技术在实际场景中的优缺点和适用性。高效诊断难度:
虽然通用 故障诊断方法的开发取得了长足的进步,但边缘云系统中的资源限制和异质性被以前的方法所忽视。需要开发高效的故障诊断算法来识别来自源域的故障标签,同时还要标记未知标签。这实现了云和边缘之间的协作,促进了决策策略的优化,并寻求在诊断性能和资源消耗之间实现最佳平衡。
总结与思考
本期推文对工业设备故障诊断的 KDDD 方法进行了全面概述和讨论。KDDD 方法提供了一种解决方案,可以解决深度学习模型的局限性,例如,不稳定和缺乏可解释性,同时还可以解决基于知识的方法所需的时间和精力。在模型构建的各个方面,对深度学习模型与专业知识的集成进行了深入探讨。此外,本文分析了工业设备故障诊断在实际工业应用环境中的独特特征,并提供了在 KDDD工业设备故障诊断方法的实际和有效实施中遇到的持续挑战和潜在方向。讨论还强调了该领域进一步发展的新解决方案。这项工作的目的是让读者全面了解先进的 KDDD工业设备故障诊断技术,从而能够为实际应用场景设计有效的解决方案。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。