概览
随着大型视觉语言模型(LVLMs)在医疗保健应用中的日益重要,包括医疗视觉问题解答和成像报告生成,这些模型在展现强大能力的同时,也继承了基础大型语言模型(LLMs)的幻觉倾向。幻觉指的是生成看似事实但无根据的内容,这在医疗领域尤其危险,因为容错率极低。然而,目前医疗领域缺乏针对幻觉检测和评估的专用方法和基准。为了填补这一空白,本文提出了Med-HallMark,首个专为医疗多模态领域设计的幻觉检测和评估基准。该基准提供了多任务幻觉支持、多面幻觉数据和层次化幻觉分类。此外,还提出了MediHall Score,一种新的医疗评估指标,通过考虑幻觉的严重性和类型,进行层次化评分,从而实现对潜在临床影响的细致评估。同时,本文还介绍了MediHallDetector,一种为精确幻觉检测而设计的新型医疗LVLM,采用多任务训练。实验结果表明,MediHall Score相比传统指标提供了更细致的理解,而MediHallDetector则表现出增强的性能。
本文贡献:
1.提出Med-HallMark基准:为医疗领域幻觉检测和评估提供了首个专用基准,解决了当前缺乏相关方法和标准的问题。
2. 设计MediHall Score:创新性地提出了一种新的医疗评估指标,通过层次化评分系统,考虑幻觉的严重性和类型,实现对LVLMs幻觉影响的细致评估。
3. 开发MediHallDetector:构建了一种新型的医疗LVLM,通过多任务训练实现精确的幻觉检测,提高了LVLMs在医疗应用中的可靠性。
Background
大型视觉语言模型在医疗领域的应用日益广泛,但幻觉问题成为其安全部署的重大障碍。这些模型在训练过程中接触到大量在线文本数据,导致它们能够从训练数据的偏差中推断信息,误解模糊提示,或修改信息以表面上与输入对齐。在医疗记录总结、客户支持对话、财务分析报告等敏感应用中,这种幻觉现象尤为危险,可能导致严重错误。因此,解决和减轻幻觉问题对于LLMs在实际环境中的广泛应用至关重要。
Method
4.1 Med-HallMark基准
4.1.1 数据收集与标注
Med-HallMark基准的核心在于构建一个全面且多样化的医疗幻觉数据集。数据收集过程涵盖了多个医疗领域的公共数据集,如医学影像数据集(如ChestX-ray、MIMIC-CXR等)、医疗问答数据集(如MedQA、ClinicalBERT等)以及医疗报告生成数据集(如Radiology Reports等)。为了标注幻觉,作者组织了一个由医疗专家和自然语言处理专家组成的团队,对模型生成的输出进行细致审查,标注出其中存在的幻觉现象。标注过程中考虑了幻觉的类型(如事实错误、逻辑错误、语义错误等)和严重性(如轻微、中等、严重)。
4.1.2 层次化幻觉分类
为了更细致地评估幻觉的影响,Med-HallMark基准提出了一个层次化的幻觉分类体系。该体系首先根据幻觉的类型进行分类,如事实性错误、逻辑不一致、语义混淆等;然后在每个类型下进一步根据幻觉的严重性进行细分,如轻微、中等、严重。这种层次化分类不仅有助于研究者更准确地识别幻觉现象,还能为模型性能的评估提供更为细致的视角。
4.1.3 多任务幻觉支持
为了评估LVLMs在不同医疗任务中的幻觉表现,Med-HallMark基准支持多种医疗任务中的幻觉检测。这包括但不限于医疗视觉问答(如根据医学影像回答医疗问题)、成像报告生成(如根据医学影像生成详细的医疗报告)等。通过多任务幻觉支持,研究者可以全面评估LVLMs在不同应用场景下的幻觉倾向和性能表现。
4.2 MediHall Score评估指标
为了更准确地评估医疗幻觉的影响,本文提出了MediHall Score评估指标。该指标基于Med-HallMark基准中的层次化幻觉分类体系,通过综合考虑幻觉的类型和严重性进行打分。具体来说,对于每个被检测出的幻觉现象,首先确定其类型(如事实性错误),然后根据其严重性(如轻微、中等、严重)给予相应的分数。最终将所有幻觉现象的分数进行汇总,得到模型的MediHall Score。这一评估指标不仅能够反映模型在幻觉检测方面的性能表现,还能为研究者提供关于模型幻觉倾向的细致洞察。
4.3 MediHallDetector检测模型
为了提升医疗幻觉的检测精度和鲁棒性,本文提出了MediHallDetector检测模型。该模型是一种新型的医疗LVLM,采用多任务训练策略进行训练。具体来说,MediHallDetector在训练过程中不仅学习了医疗领域的语言知识和视觉特征表示能力,还通过引入幻觉检测任务来增强其对幻觉现象的识别和判断能力。在模型结构上,MediHallDetector结合了多模态融合技术、注意力机制以及幻觉检测专用模块等先进技术元素,以实现更加精确和高效的幻觉检测。
在训练过程中,MediHallDetector使用Med-HallMark基准中的数据集进行训练,并通过优化损失函数来不断提高其在幻觉检测任务上的性能表现。此外,为了提升模型的泛化能力和鲁棒性,作者还采用了数据增强、正则化等策略来避免过拟合和提高模型的鲁棒性。
Experiment
实验部分具体描述了以下几个方面的内容:
实验设置:
使用Med-HallMark基准对多种流行的LVLMs进行幻觉检测和评估。
通过对比实验,验证MediHall Score和MediHallDetector的有效性和优越性。
实验结果:
实验结果表明,MediHall Score相比传统指标能够提供更细致、更准确的幻觉影响评估。
MediHallDetector在幻觉检测任务中表现出色,显著提高了检测精度和鲁棒性。
Conclusion
本文针对大型视觉语言模型在医疗应用中的幻觉问题,提出了Med-HallMark基准、MediHall Score评估指标和MediHallDetector检测模型。实验结果表明,这些方法在幻觉检测和评估方面取得了显著进展,为提升LVLMs在医疗应用中的可靠性提供了有力支持。
Assignment
基准与评估指标的重要性:本文强调了建立专用基准和评估指标对于推动领域发展的重要性。未来研究可以借鉴这一思路,针对其他领域的问题建立相应的基准和评估体系。
多任务训练与模型优化:MediHallDetector的成功表明,多任务训练是提高模型性能的有效手段。未来可以探索更多多任务训练策略,以进一步提升模型的泛化能力和鲁棒性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。