LLM数据标注:是否胜过人类?

数据科学家花费 80% 以上的时间来准备数据,这其中主要是数据清洗、数据标注。随着 GPT-4 等大型语言模型 (LLM)的兴起,现在我们可以更高效的准备工作。在本文中,我们将探讨如何使用 LLM 进行数据标注,以提高文本注释的准确性、效率和可扩展性,并最终为 ML 项目带来更好的结果。

一、LLM数据标注流程

在这里插入图片描述

人类与 LLM 数据标注步骤

让我们将其与传统的人工标注过程进行比较,以更好地理解 LLM 数据标注的工作原理。

首先,您必须根据项目目标定义所需的标注任务和架构。例如,在命名实体识别中,架构将包括 人Person组织Org位置Location日期Date 等标签。接下来,人工标注者按照既定的标注规范对原始数据进行标注。

而使用 LLM 进行数据标注, 流程如下:

  1. 模型选择 :选择一个 LLM(如,在线ChatGPT、离线Llama)并对其进行配置(例如,设置温度参数)。

  2. 预处理 :创建一个提示,指导 LLM 完成标记任务,并在需要时包含标记的示例。

  3. 调用 LLM API:通过 API 将提示发送给 LLM 进行大规模注释。确保提示在 LLM 的令牌限制范围内。

  4. 后期处理:解析 LLM 的响应,提取标签,并将其映射到您的架构。由于自由文本输出中可能存在噪音,因此此步骤可能具有挑战性。

通过这些步骤,我们就可以用 LLM 进行数据标注,减少对人工标注者的依赖同时还能保持较高的准确性、客观性。

二、LLM的优点

LLM 对数据标注的优点

  • 标记任务的自动化:LLM 可以自动化和加快数据标注过程,显著减少手动标注所需的时间和精力。

  • 提高准确性和一致性 :LLM 通过从大型数据集中学习复杂模式,在标注数据中实现更高的准确性和一致性,超越传统的基于规则的系统。

  • 可扩展性:LLM 具有可扩展性优势,可有效处理大型数据集并在不同量的数据中保持性能。

  • 更高的准确性和一致性:LLM 擅长从大量数据集中学习复杂模式,提供超越基于规则的方法的准确性和一致性。

  • 适应性 :LLM 用途广泛,能够处理多种数据类型,包括文本、图像和音频,适用于各种应用程序。

  • 持续改进:LLM 通过更新新数据和反馈不断提高其性能,确保其长期有效性。

三、常见的LLM

市面上的大模型有很多, 但大邓用过的且觉得不错的,推荐如下。

  • OpenAI GPT-4(商业):以其先进的语言理解和生成能力而闻名,使其对于各种数据标注任务非常有效。

  • Metal的LLaMa(开源):最新的LLama3.1 405B表现超过GPT4商业版。可本地离线部署, 数据安全性高

  • 阿里的Qwen(开源):中文的开源大模型, 表现超过GPT3.5;可本地离线部署, 数据安全性高

四、LLM数据标注任务类型

LLM 仍在发展,但大量研究表明这些模型对于自动化数据标注非常有用。

研究发现,使用 LLM(特别是 Flan-UL2 和 Mistral-7B)有助于生成用于 YouTube 评论立场分类的弱标签。LLM 在确定立场方面实现了高精度。结合数据编程模型中的其他弱信号,这产生了稳健的最终立场标签,大大提高了标记过程的整体质量和效率。另一项研究,分别使用人类和LLM对数据进行标注, 使用标注数据微调模型, 发现LLM微调模型性能接近人类微调模型。这种方法在保持高准确度的同时显著减少了对人工注释的依赖,证明了 LLM 能够有效自动化和简化标记工作流程的潜力。

大型语言模型 (LLM) 在处理自动数据标注方面用途广泛。其先进的语言处理能力使它们能够在 LLM 数据注释中执行一些关键任务:

  • 命名实体识别 (NER):LLM 可识别和标记文本数据中的人员、组织、地点、日期等的名称。这对于从大型数据集中提取特定实体至关重要。

  • 情感分析 :LLM 分析文本数据中的情绪,将其归类为积极、消极或中性。这对于理解文本中的观点和态度很有用。

  • 意图检测:LLM 确定文本背后的意图,将其分为问题、请求或命令等类别。这对于自然语言理解 (NLU) 系统至关重要。

  • 词性 (POS) 标记:LLM 为句子中的单词分配语法标记,指示其句法角色,例如名词、动词或形容词。这对于解析和句法分析至关重要。

  • **语义角色标注 (SRL)**:LLM 识别实体相对于句子中主要动词所扮演的角色,例如施事者或受事者。这有助于理解句子结构和含义。

  • 主题分类:LLM 根据内容将文本数据分类到预定义的主题中。这有助于文档分类和内容推荐。

  • 数据提取:LLM 提取关键数据点,例如事件、参与者、时间和地点。它们还检测和标记时间表达,例如日期和持续时间。此功能对于信息检索、事件跟踪和处理与时间相关的数据至关重要。

五、LLM数据标注的最佳实践原则

在这里插入图片描述

Human-LLM 数据标注流程

Human-LLM 数据标注流程

为了充分利用 LLM 进行数据标注,请遵循以下可提高性能和准确性的最佳实践:

5.1 提示工程

选择正确的提示对于提高 LLM 标签至关重要。平衡描述性说明和清晰度。使用:

  • 零样本提示:提供简单的、针对特定任务的说明和示例。

  • 少量提示:将人类指令与标记示例相结合,以提高注释准确性。

5.2 模型选择和微调

为您的任务选择合适的 LLM , 如果条件允许建议使用微调后的LLM , 可确保更好的性能并减少偏见。

  • 模型选择:根据任务需求选择合适的LLM。

  • LLM 微调:选择正确的LLM 微调方法使用特定领域的数据训练模型以获得更好的结果。

5.3 工具集成

将 LLM 与现有的数据注释工具和平台相结合,以简化工作流程。

  • 无缝集成:确保与当前注释工具的兼容性。

  • 工作流自动化:自动化标注过程的部分内容以提高效率。

  • 数据管理:使用集成平台更有效地处理数据并保持一致性。

5.4 人类监督

融入人类专业知识以增强LLM性能表现:

  • 有人介入(在场):将 LLM 预注释与人工细化相结合,以获得更高的准确性。

  • 反馈机制:使用人工和自动反馈循环不断提高模型性能。

5.5 模型参数优化

调整模型参数有助于优化LLM的输出质量和对特定任务的适应性。

  • 温度设置:微调温度设置以控制输出的随机性,数值越大越随机。

  • 其他参数:调整其他相关参数以适合特定任务。

5.6 评估LLM 标注表现

定期根据基准评估 LLM 标注表现:

  • 综合评价:使用人工评审、“图灵测试”等方法检验作品的准确性和原创性。

  • 特定任务指标:针对不同的应用程序应用适当的指标,确保注释多样化且可靠。

通过遵循这些最佳实践,您可以最大限度地提高 LLM 数据标注的效率和准确性。

六、LLM数据标注面临的挑战

在这里插入图片描述

推动法学硕士进行情绪分析

为了有效地使用 LLM 进行数据标注,解决固有的挑战至关重要:

  • 准确性:确保高准确性至关重要,因为 LLM 可以处理基本标记,但需要彻底的 QA 来审查边缘情况 - 上下文或含义模糊或复杂的情况下,这使得准确标记更具挑战性。

  • 偏见与公平:LLM 可能会继承其训练数据中存在的偏见,这可能会导致标记数据产生不公平的结果。解决这些偏见对于确保标注过程公平公正至关重要。

  • 数据隐私:维护数据隐私和安全是 LLM 数据标注的重中之重。确保在整个数据标注过程中保护敏感信息对于遵守数据保护法规和与利益相关者建立信任至关重要。

  • 成本和资源管理:部署 LLM 进行数据标注可能需要大量资源,需要大量计算能力和相关成本。有效管理这些资源对于平衡性能和成本效益至关重要。

  • 文本数据限制:虽然 LLM 主要用于文本数据,但对于其他数据类型(例如图像或音频),其效率较低。此限制需要集成其他工具或模型来处理各种数据类型。

  • 持续维护:LLM 需要定期更新和重新训练,以保持高质量的标注。这种持续的维护可确保模型在出现新数据和新需求时保持最新和有效。

  • 过度自信:LLM 有时会以较高的确定性提供错误的标签,从而破坏标注数据的可靠性。实施不确定性估计和人工监督机制可以帮助缓解这一问题。

克服这些挑战将有助于您的 LLM 数据标注系统保持公平、可靠和负责。

七、总结

我们可以期待下一代 LLM 为数据标注任务带来重大改进。增强的适应性将使未来的 LLM 能够处理更广泛的数据类型,包括文本、图像和音频。此外,即将到来的进步将侧重于减少 LLM 中的固有偏见。

LLM 在数据标注方面的潜在新应用将包括跨领域标注和实时数据注释。此外,个性化学习模型将变得更加普遍,使 LLM 能够适应特定的行业需求并为数据标注任务提供量身定制的解决方案。

让我们回顾一下使用 LLM 进行数据标注的要点:

  • LLM 数据标注非常适合预算有限的项目和以一致性为关键的客观任务。但是,它可能不适合主观任务,因为对正确标签的看法可能会有很大差异。

  • 严格评估您的 LLM 数据标注结果。检查是否存在偏见和其他问题。考虑考虑到您的项目的背景和影响,潜在错误是否可以接受。

  • 避免依赖 LLM 来取代人工注释者,因为这可能会导致不准确。对于医疗保健等关键应用,使用 LLM 数据标注来加快速度。始终聘请人工专家来验证和更正标签。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值