通过引入注意力机制,强化学习模型不仅能够更加高效地处理复杂的环境和任务,还能在学习和决策过程中实现更高的精度和适应性。
因此这种结合迅速成为了各大顶会的投稿热门,而且已经在实际应用中有了显著的性能提升。比如分散式强化学习框架SACD-A,算法训练样本吞吐量直接提高了10倍!
状态表示中的注意力机制
在强化学习中,状态表示指的是描述当前环境的关键信息。通过在这一阶段引入注意力机制,算法可以更有效地关注状态表示中的关键信息,从而提高学习效率和性能。
具体步骤
-
通过注意力机制确定状态向量中各元素的权重。
-
依据权重,对状态向量加权求和,形成新的状态表示。
-
将优化后的状态表示用于动作选择。
算法原理
其中S表示状态,K和V分别表示键和值,是键的维度。
论文示例
Improving Autonomous Separation Assurance through Distributed Reinforcement Learning with Attention Networks
方法:论文将分布式强化学习与注意力网络结合,开发了一种异步训练架构,将代理-环境交互与算法训练解耦,从而在训练过程中提高了约10倍的转换数量。
创新点:
-
提出了一种基于SACD和注意力网络的可扩展、分布式和样本高效的飞机分离保障框架,能够同时提高安全性和运行适应性。
-
引入了垂直机动的扩展动作集,相比以前的方法,提供了更多的选择。
-
开发了一个具有代表性的AAM环境(AAM-Gym),为评估所提出框架的有效性提供了一个全面的环境。
Framu: Attention-based machine unlearning using federated reinforcement learning
方法:论文介绍了一个名为FRAMU的框架,它结合了强化学习和注意力机制,通过自适应学习机制、隐私保护技术和优化策略,有效解决了在处理过时、隐私和无关数据时所面临的隐私和模型效率的挑战。
创新点:
-
FRAMU引入了一种自适应的"反学习"算法,该算法结合了注意力机制,以适应单模态和多模态设置中的学习与"反学习"过程。
-
该框架利用FedAvg机制个性化"反学习"过程,确保模型可以从隐私角度丢弃已经变得无关紧要、过时或可能侵犯隐私的数据。
动作选择中的注意力机制
在动作选择阶段,注意力机制可以用来加权不同动作的优先级,让算法可以更有效地关注动作选择中的关键信息,从而选择更合适的动作。
具体步骤
-
利用注意力机制计算每个动作的权重值,突出对决策最重要的动作。
-
根据权重值选择最优动作或将其作为输入到后续神经网络中进行进一步处理。
算法原理
其中A表示动作集合。
论文示例
ARiADNE: A Reinforcement learning approach using Attention-based Deep Networks for Exploration
方法:论文介绍了ARiADNE系统,它是一个基于强化学习和注意力机制的深度神经网络方法,用于自主机器人探索任务。
创新点:
-
ARiADNE是一种基于深度强化学习的自主探索方法,通过两个基于注意力的神经网络实现。
-
首先将自主探索问题建模为在已知可行区域上进行顺序决策的问题,其中一个节点是机器人的当前位置。然后,作者使用基于注意力的神经网络来选择当前机器人位置的一个相邻节点作为下一个视点。
奖励预测中的注意力机制
在强化学习中,将注意力机制引入奖励预测阶段,可以让算法更有效地关注奖励预测中的关键信息,从而提高预测准确性。
PS:在实际应用中,直接在奖励预测阶段引入注意力机制的案例很少。
具体步骤
-
使用注意力机制为历史奖励数据计算权重。
-
根据权重对奖励进行加权求和或平均,得到更加准确的奖励预测。
算法原理
其中R表示奖励,K表示键,V表示值,表示键的维度。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。