人工智能(AI)在生成类似人类的文本和准确回答问题方面取得了飞跃,但存在局限性。传统模型完全依赖于它们的训练数据——在训练期间吸收的固定知识。它们无法查找新鲜或专业信息,这限制了它们在动态情况下的实用性。
检索增强生成(RAG)通过使 AI 能够实时“咨询外部来源”来解决这个问题,就像学生在开卷考试中参考教科书一样。这种检索和生成的混合方法使 RAG 能够产生更准确、上下文相关和最新的回答。让我们深入了解 RAG 是如何工作的以及为什么它是 AI 演变中的变革性步骤。
什么是检索增强生成(RAG)?
检索增强生成(Retrieval-Augmented Generation, RAG)是一种结合“检索”和“生成”能力的人工智能技术,类似于学生在开卷考试中的答题策略。想象一个学生亚历克斯正在准备一场开卷考试。在考试中,亚历克斯不仅依赖记忆,还会在遇到难题时查阅课本中的相关章节(检索信息),然后结合自己的知识写出完整、有依据的答案(生成回答)。这正是RAG的核心理念。
RAG 将两种主要的AI能力——检索和生成——巧妙融合。
检索:当面临问题时,RAG并不局限于其训练数据(类似于“记忆”),而是主动从外部知识源中检索相关信息。这些外部来源可以是数据库、文档或其他结构化知识库,就像亚历克斯在答题时查阅课本一样,确保获取准确且最新的知识。
生成:在获取到相关信息后,RAG结合这些检索结果与自身已有的知识,生成一个连贯且准确的回答。这个过程类似于亚历克斯将课本中的知识与自己的理解融合,以写出逻辑清晰的答案。
RAG的这种能力,使其特别适用于处理需要最新信息或复杂背景的动态查询。通过同时依赖外部知识和内在推理,RAG不仅可以回答精确的问题,还能应对更广泛、深层次的内容需求,为用户提供更智能、更可靠的解决方案。
RAG 的工作原理:分解核心组件
检索增强生成(RAG)依赖几个核心组件来高效完成信息的检索和生成。这些组件协同工作,确保 RAG 能够准确理解问题、检索相关信息,并生成连贯的回答。
RAG 的第一个核心是 向量嵌入技术,它用于高效检索信息。向量嵌入是一种将文本转化为数值表示(向量)的方法,根据文本的语义相似性对信息进行组织和匹配。这种方式使得 RAG 能快速找到与问题相关的信息。类似于教科书按章节分类,向量嵌入帮助系统迅速定位关键内容,而无需逐页搜索。当提出一个问题时,RAG 会通过向量嵌入匹配问题与数据库中的相关段落,从而实现高效的信息检索,即使面对庞大的数据量也能快速响应。
第二个核心是 检索模型,其主要任务是从外部来源中定位相关信息。检索模型通过分析问题的语义,与外部知识库、文档集合甚至网络实时检索中找到最相关的内容,同时过滤掉无关的信息。这一步对 RAG 的整体能力至关重要,尤其是在回答关于最新事件或特定领域问题时。例如,用户询问最近的科学发现时,检索模型可以访问科学数据库并提取最新的研究结果,从而让 RAG 提供及时准确的回答。
在完成检索后, 生成模型 接管任务。生成模型将检索到的信息与系统内部固有的知识相结合,生成自然流畅且与上下文相关的回答。这一过程不仅确保回答的内容准确,还让语言表达更加连贯。类似于学生将笔记和课本内容整合成全面的答案,而非直接复制原文,生成模型能够根据检索结果进行推理和扩展,从而为用户提供更有深度的回应。
通过将向量嵌入、检索模型和生成模型紧密结合,RAG 实现了从问题理解到知识获取再到语言生成的完整流程。这种多层次的协作使其能够应对复杂的动态查询,尤其在需要实时更新或专业知识支持的场景中表现尤为出色。
为什么 RAG 很重要:检索增强生成的优势
检索增强生成(RAG)为人工智能的发展带来了重要突破,尤其是在需要提供最新、上下文敏感答案的应用中表现出色。以下是 RAG 的关键优势:
RAG 能够获取最新信息,这是传统模型无法实现的能力。传统模型的知识来源于训练数据,无法应对实时信息的需求,例如当前事件或最新研究成果。这种局限性在信息快速更新的场景中尤为明显。而 RAG 的检索组件能够从外部来源实时获取所需内容,使其在处理经常变化的话题时表现尤为出色。例如,当需要解答最新科技突破或新闻动态时,RAG 能够快速调取相关资料,提供及时且准确的回答。
通过检索相关主题的精确信息,RAG 提高了回答的准确性和相关性。相比完全依赖训练数据的传统模型,RAG 可以根据查询需求动态获取专业内容,特别是在处理复杂或技术性问题时。例如,在解决专业性较强的医学问题时,RAG 可以直接引用相关文献或研究,确保答案更具权威性和针对性。这种结合内在知识与外部数据的能力,使其回答更加符合实际需求。
RAG 的高效内存使用是其另一大优势。传统模型需要记住海量数据,其中很多内容可能在实际应用中很少被使用,而这种“死记硬背”的方式对内存和计算资源的消耗较大。RAG 则避免了这一点。它只在需要时检索相关信息,将计算资源集中在通用知识的管理上,从而优化了内存使用效率。这种按需获取的机制不仅减少了冗余信息的存储,还提升了模型的整体性能。
RAG 还展现了高度的领域适应性。它可以根据特定行业需求,从特定数据库或知识库中检索信息,满足不同领域的专业需求。例如,在医疗领域,RAG 能从医学数据库中提取病例分析或药物研究;在金融领域,它可以获取实时的经济数据或市场动态。这种可定制化能力,使 RAG 能够成为各行业内的高效工具,满足特定场景的知识需求。
综合来看,RAG 不仅突破了传统模型的局限性,还在实时性、准确性、内存使用效率以及领域适应性方面表现出众。其独特的检索与生成结合能力,使其在复杂、多变的实际应用中成为不可或缺的智能系统。
LangChain Memory 结合 LLMs:为聊天机器人赋予记忆能力
在人工智能技术迅速发展的今天,聊天机器人已成为我们日常生活中不可或缺的工具。从解答客户问题到提供个性化服务,这些智能助手覆盖了多种场景。然而,传统聊天机器人面临一个核心限制:它们往往是无状态的,无法记住用户的上下文信息。每次用户的查询都被视为独立交互,而之前的对话内容则被忽略。这种局限性使得对话缺乏连贯性,偶尔显得机械和缺乏人情味。
为了解决这一问题,LangChain Memory 应运而生。作为一种创新的对话记忆解决方案,LangChain Memory 能够让聊天机器人记住过去的交互历史,并利用这些信息生成更贴近用户需求、更自然的回答。通过引入对话记忆,聊天机器人不仅变得更流畅,还能提供个性化和连贯性的对话体验,为用户带来更加贴心的服务。
LangChain Memory 的核心功能在于其模块化和高效的设计,使开发人员能够轻松将其集成到聊天机器人或其他对话代理中。它提供了一个统一的接口,能够管理不同类型的记忆,包括对话缓冲记忆和对话摘要记忆。这种灵活性让开发者可以根据需求轻松存储和检索对话历史,从而优化聊天机器人的性能。
除此之外,LangChain Memory 还具备学习和适应新信息的能力。它能够根据存储的上下文信息,生成更准确和相关的响应。例如,当用户与机器人进行多轮对话时,LangChain Memory 可以通过记住用户的偏好和先前提到的内容,提供更个性化的服务。这种上下文意识让聊天机器人显得更加智能和人性化。
值得一提的是,LangChain Memory 可以与多种语言模型(LLMs)无缝集成,包括预训练模型如 GPT-3、ChatGPT,以及自定义模型。开发人员可以根据具体需求选择合适的语言模型,并结合 LangChain Memory 的记忆功能,打造反应迅速、体验出色的聊天系统。
通过结合 Streamlit 和 OpenAI GPT API,LangChain Memory 的潜力进一步被放大。开发者可以利用 Streamlit 构建友好的前端界面,并通过 GPT API 提供强大的语言生成能力。这种结合不仅让聊天机器人更智能,还为开发人员提供了一个高效的开发框架,快速实现从基础对话到复杂互动的全流程体验。
LangChain Memory 的出现,为解决传统聊天机器人“无状态”这一痛点提供了突破性方案。它不仅提升了对话的连贯性和自然性,还大幅拓展了聊天机器人的应用边界。未来,随着更多技术的融合,聊天机器人将以更智能、更人性化的姿态,为用户提供更加优质的服务体验。
pip install langchain``pip install openai``import os` `os.environ['OPENAI_API_KEY'] = "your-openai-api-key"``from langchain.llms import OpenAI``from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory``conversation_with_memory = ConversationChain(` `llm=OpenAI(temperature=0,openai_api_key=os.getenv("OPENAI_API_KEY")),`` memory=ConversationBufferMemory(), `` verbose=True``)`` ``conversation_with_memory.predict(input="你好,我是Kevin")` `conversation_with_memory.predict(input="我是一个人工智能爱好者,喜欢通过公众号分享人工智能领域相关的知识")` `conversation_with_memory.predict(input="我希望你能用我的名字为我的公众号设计一个专业名称")` `conversation_with_memory.predict(input="你还可以给出更多选项吗")
在 LangChain 中,链通常用于分解任务,由链接组成。Lang Chain提供了 ConversationChain,它是专门为有一些记忆概念的场景而创建的。创建类的实例时ConversationChain,必须提供三个参数:
llm,指定用于生成响应的语言模型;
memory,它确定用于存储对话历史记录的内存类型;
verbose,控制通话过程中是否打印提示等信息。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。