在人工智能的浪潮中,智能体技术正逐渐成为推动行业进步的关键力量。各个部件都已准备就绪:计算机接口(computer use)使用MCP(Model Context Protocol)、强化工具插件(tools)使用。现在是时候开始考虑构建这些智能体系统了。本文将结合业界实际情况,深度挖掘构建有效智能体的策略,从基础定义到实战优化,为您提供一站式的智能体构建指南。
一、智能体的定义与架构
智能体(Agent)在人工智能领域有着多种定义方式。一些客户将其视为能够独立运行、使用各种工具完成复杂任务的完全自主系统。而Anthropic则将智能体系统分为两大类:工作流程和智能体。工作流程通过预定义代码路径编排LLM和工具,而智能体则是LLM动态地指导自身流程和工具使用,对如何完成任务保持控制。
二、构建智能体的最佳实践
1. 何时使用智能体:在构建LLM应用程序时,应尽可能寻找最简单的解决方案,并在必要时增加复杂性。智能体系统通常在延迟和成本上进行权衡以获得更好的任务性能。
2. 框架的选择:市面上有许多框架可以帮助实现智能体系统,如LangChain的LangGraph、亚马逊Bedrock的AI Agent框架等。这些框架简化了调用LLM、定义和解析工具等任务,但也可能会增加额外的抽象层,使调试变得困难。
3. 构建块与工作流程:智能体系统的基本构建块是增强型LLM,它们可以生成搜索查询、选择合适的工具以及确定要保留的信息。工作流程包括提示链、路由、并行化和编排器-工作器等模式,适用于不同场景和需求。
The augmented LLM
The prompt chaining workflow
The routing workflow
The parallelization workflow
The orchestrator-workers workflow
The evaluator-optimizer workflow
Autonomous agent
High-level flow of a coding agent
三、智能体的测试与优化
智能体的调优是一个至关重要的环节,直接影响智能体的性能和实际应用效果。调优前的准备包括对智能体的基础架构、算法原理以及应用场景进行全面了解。调优过程中的挑战包括模型优化、数据预处理、硬件与网络优化等。
四、智能体工具的优化
工具是智能体的一个重要部分,它们使LLM能够与外部服务和API交互。工具定义和规格应该像对整体提示一样给予足够的提示工程关注。例如,提供示例用法、边缘案例、输入格式要求和与其他工具的明确界限。
五、智能体的未来发展
随着大模型技术的发展,基于大模型搭建的智能体的能力边界也在不断突破。智能体技术可以创建各种各样的AI应用,如Copilot、DB-GPT等,这些应用已经成为工作生活中不可缺少的存在。
结语:
构建有效的智能体不仅需要对技术有深刻的理解,还需要在实践中不断优化和调整。通过遵循上述原则和策略,您可以构建出不仅强大而且可靠、可维护并且受用户信任的智能体系统。未来,智能体将在更多领域发挥重要作用,推动企业向智能化、高效化方向发展。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。