KG4Diagnosis - 知识图谱增强的多智能体大模型在医学诊断中的应用

摘要

这篇论文提出了KG4Diagnosis,一个结合了大型语言模型(LLMs)和知识图谱增强的分层多智能体框架,用于医疗诊断。KG4Diagnosis 是一个创新的分层多智能体大型语言模型(LLM)框架,采用自动化知识图谱构建技术进行医学诊断,结合语义实体提取、决策关系重构和人工引导推理,以提高准确性并应对 LLM 的幻觉挑战。

[2412.16833] KG4Diagnosis: A Hierarchical Multi-Agent LLM Framework with Knowledge Graph Enhancement for Medical Diagnosis

https://arxiv.org/abs/2412.16833

将大型语言模型(LLMs)整合到医疗保健诊断中需要系统框架,这些框架能够处理复杂的医疗场景,同时保持专业知识的专有性。我们提出了KG4Diagnosis,这是一种新颖的多智能体层级框架,结合了LLMs与自动化的知识图谱构建,涵盖了362种常见疾病,覆盖医学各个专业领域。我们的框架通过双层架构反映现实世界的医疗系统:一般执业者(GP)智能体用于初步评估和分诊,与专门智能体协调进行特定领域的深入诊断。我们的核心创新在于端到端的知识图谱生成方法,包括:(1)针对医学术语优化的语义驱动实体和关系提取,(2)从非结构化医疗文本中重建多维决策关系,以及(3)用于知识扩展的人引导推理。KG4Diagnosis作为专业医学诊断系统的可扩展基础,具有纳入新疾病和医学知识的能力。框架的模块化设计使得领域特定的增强功能能够无缝整合,对于开发针对性的医学诊断系统非常宝贵。我们提供建筑指南和协议,以促进跨医疗环境的采用。

引言

知识图谱(KGs)已成为众多领域的变革性工具,展示了它们组织复杂数据集和支持高级推理与决策的能力。在金融领域,KGs通过连接不同的金融数据集来揭示隐藏的模式和关系,在风险评估和欺诈检测中扮演了关键角色。例如,KGs在检测欺诈性关联方交易中的应用使金融机构能够模拟实体之间的复杂相互依赖关系,提高了识别欺诈活动的准确性(张、李和王 2023年)。同样,在教育领域,KGs通过结构化来自广泛学术资源的知识来推荐量身定制的学习路径,从而增强个性化学习。一个显著的实施案例包括使用KGs整合课程设计、学生评估和教学资源的数据,创建提高学生参与度和成果的自适应系统。在制造业,知识图谱(KGs)通过整合异构数据源实现了流程的自动化和优化。最近的一项研究强调了它们在可重构制造系统(RMS)中的作用,其中语义模型和KGs支持自动化资产能力匹配和重新配置解决方案。这种方法通过利用结构化知识进行动态决策,在制造系统(Mo等人,2024年)中展示了显著的效率提升、成本降低和生产率提高。

在医疗领域,知识图谱(KGs)(Abdulla、Mukherjee和Ranganathan 2023年;Alam、Giglou和Malik 2023年;Wu等人,2024年)作为组织多样化医疗数据和支持临床决策的关键基础设施。然而,构建和对医疗知识图谱(Abdulla、Mukherjee和Ranganathan 2023年;Al Khatib等人,2024年)进行推理,特别是来自非结构化和多模态数据,呈现出现有方法尚未完全解决的重大挑战。

当前用于构建医疗知识图谱的方法涵盖了从传统基于规则的系统到先进的AI模型。使用SNOMED-CT(Chang和Mostafa 2021年)和UMLS(Amos等人,2020年)的基于规则和本体驱动的方法提供了可靠性,但缺乏可扩展性,并且在处理非结构化数据时存在困难。虽然大型语言模型(LLMs),如GPT(OpenAI 2022年、2023年;Touvron等人,2023年;Garcia-Ferrero等人,2024年)和MedPaLM(Qian等人,2024年)在从非结构化数据生成结构化知识方面显示出希望,但它们面临幻觉和准确性的挑战(Huang等人,2023年;Tonmoy等人,2024年;Guo等人,2024年)。结合图神经网络(GNNs)的混合方法试图平衡符号推理与深度学习,但仍计算复杂,并依赖于结构良好的输入(Zhang 2021年;Zhang等人,2024年;Shuifa等人,2023年)。

在诊断和治疗方面,医学知识图谱(KGs)为识别患者数据、医学文献和临床指南中的模式与关系提供了关键基础(李等人,2020年)。在诊断中,KGs有助于将症状映射到潜在疾病,识别相关检测,并优先进行鉴别诊断(唐等人,2023年)。在治疗中,KGs根据患者特定因素(如共病、药物相互作用和遗传标记)协助推荐个性化治疗方案(邦纳等人,2022年)。这些过程通过提供结构化、基于证据的建议来增强临床决策。

为了解决当前方法的局限性并提升整体临床工作流程,我们提出了KG4Diagnosis,一个用于构建、诊断、治疗和推理自动化医学知识图谱的新型端到端框架。我们的框架独特地整合了层次化的多代理架构,反映现实世界的医疗系统:一般内科医生(GP)代理进行初步评估和分诊,然后与专门针对特定领域的代理协调进行领域分析。这种方法结合了大型语言模型(LLMs)的广泛能力与专业医学知识的精确性,确保准确的诊断、个性化治疗建议以及提升临床决策。

该框架创新性地融合了先进的语义实体提取、决策重构和可扩展知识扩展技术,专门设计用于处理非结构化和多模态医学数据。通过弥合传统知识图谱方法与现代化人工智能能力之间的差距,KG4诊断旨在实现更为稳健和适应性强的医疗决策支持系统。

在本文中,我们做出以下关键贡献:

● 我们提出KG4诊断,这是一种新颖的分层多智能体框架,反映了现实世界的医疗系统,包括用于初步评估的通用概率(GP)智能体和针对362种常见疾病进行领域特定诊断的专门智能体。

● 我们开发了一种创新的端到端知识图谱构建流程,包含三个关键组成部分:语义驱动的实体提取、多维决策关系重建以及人类引导的知识扩展推理。

● 我们实施稳健机制,以应对大型语言模型在医学诊断中的幻觉挑战,通过多智能体验证和知识图谱约束,并使用全面的基准测试进行验证。

● 我们通过实际的医疗场景展示了该框架的实际价值。

● 我们提供了一个模块化且可扩展的架构,支持新医疗领域和知识的无缝集成,并提供了详细的实施协议,以便在各种医疗环境中广泛采用。

核心速览

研究背景

  1. 研究问题:这篇文章要解决的问题是如何将大型语言模型(LLMs)与自动知识图谱构建相结合,以提高医疗诊断的准确性和效率。

  2. 研究难点:该问题的研究难点包括:处理复杂的医疗场景、维持专业知识、从非结构化医疗文本中提取有意义的信息、防止大型语言模型的幻觉问题。

  3. 相关工作:该问题的研究相关工作包括基于规则的系统、本体驱动的方法、深度学习方法、预训练模型以及混合符号-神经网络方法。这些方法在处理医疗知识图谱构建和推理方面各有优缺点。

研究方法

这篇论文提出了KG4Diagnosis,一种新的分层多智能体框架,用于解决医疗诊断中的复杂问题。具体来说,

  1. 系统架构概述:KG4Diagnosis设计为一个分层多智能体框架,集成了LLMs和自动知识图谱构建,用于医疗诊断。系统架构包括两个主要组件:知识图谱构建管道和多智能体系统。

  2. 知识图谱构建管道:该框架实现了三个阶段的知识图谱自动构建过程:

  • 数据分块和分段:将医疗文档分段成符合知识图谱上下文约束的数据块。

  • 语义驱动的实体和关系提取:利用BioBERT模型和医学本体(如SNOMED-CT和UMLS)从分段的数据块中提取实体和关系。

  • 知识图谱构建:基于提取的实体和关系构建知识图谱。

  • LLMs增强知识图谱:利用LLMs识别超出BioBERT提取能力的实体和关系,并将其集成到知识图谱中。

  • 专家引导的推理:通过专家验证确保知识图谱的质量和准确性,并通过专家验证的关系扩展知识图谱。

  1. 分层多智能体框架:为了处理医疗诊断推理的复杂性,开发了分层多智能体框架,整合了全科医生大型语言模型(GP-LLM)和多个特定领域的顾问大型语言模型(Consultant-LLMs)。诊断过程数学建模如下:
  • GP-LLM:初级诊断代理,作为分析用户查询的初始界面。

  • Consultant-LLMs:特定领域的诊断代理,针对特定医学领域进行优化。

  • 智能体间通信协议:确保案例的无缝转移和协作细化。

  • 转诊决策阈值:定义转诊的数学条件。

  • 高级诊断与多智能体协作:对于需要多个顾问输入的复杂查询,计算最终诊断置信度。

    1. 示例:

一个诊断对话的例子,展示了患者、医生和人工智能医疗助手之间的互动。患者描述症状,医生提出澄清性问题,人工智能提供解释和建议。这个对话突显了协作诊断过程以及人工智能系统如何帮助提供个性化医疗建议。

实验设计

  1. 数据收集:系统覆盖了362种常见疾病,涵盖了多个医学专业领域的知识。

  2. 实验设计:系统的训练过程包括多方面的综合覆盖,结合一般医学知识和特定领域的专业知识。每个疾病类别都实施了针对性的微调协议,以确保深度的领域特定知识,同时保持与更广泛框架的连贯集成。

  3. 样本选择:选择了多种医学文档和临床指南作为训练数据,以确保模型的泛化能力。

  4. 参数配置:使用了PyTorch进行神经网络组件的实现,Neo4j进行知识图谱管理。

结果与分析

  1. 诊断准确性:KG4Diagnosis在防止幻觉的同时保持了诊断的准确性,显著优于传统的单一智能体方法。

  2. 知识图谱构建:通过专家验证和扩展,知识图谱展示了疾病、症状和诊断模式之间的复杂相互联系,支持高效的知识导航和分层决策过程。

  3. 系统适应性:框架的模块化设计使其非常适合整合新的医学领域和知识,适用于医学知识的动态特性。

  4. 可扩展性:尽管分层结构通过分层决策过程有效地管理了计算资源,但随着医学领域数量的增加,系统在协调多个专业智能体方面面临越来越复杂的挑战。

总体结论

这篇论文提出了KG4Diagnosis,一种新的分层多智能体框架,结合了自动知识图谱构建和特定领域的LLMs,用于医疗诊断。通过三阶段知识图谱构建管道和分层智能体结构,KG4Diagnosis展示了其在处理复杂医疗场景和提高诊断准确性方面的显著优势。尽管当前实现显示了有希望的结果,但正在开发综合基准以提供标准化的评估指标,以便在社区中进行评估。这项工作不仅为当前的医疗AI挑战提供了一个实用的解决方案,而且为未来的分层多智能体系统的发展奠定了基础。

论文评价

优点与创新

  1. 创新的层次化多智能体框架:KG4Diagnosis提出了一个新颖的层次化多智能体框架,结合了大型语言模型(LLMs)和自动知识图谱构建,能够处理复杂的医疗场景并保持专业知识的专门性。

  2. 端到端的知识图谱生成方法:该框架创新性地结合了语义驱动的实体和关系提取、多维决策关系重建以及人类引导的推理知识扩展。

  3. 多智能体验证机制:通过多智能体验证和知识图谱约束,解决了LLMs在医疗诊断中的幻觉挑战,并通过综合基准进行了验证。

  4. 模块化可扩展的架构:框架的模块化设计支持无缝集成新的医学领域和知识,具有广泛的适用性。

  5. 实际应用场景:通过真实世界的医疗场景展示了框架的实际价值。

  6. 详细的实施协议:提供了详细的实施协议,便于在各种医疗背景下广泛采用。

不足与反思

  1. 知识图谱的质量和全面性:系统性能可能受到底层知识图谱质量和全面性的影响,特别是在罕见或复杂医疗条件下。

  2. 处理边缘案例的挑战:在医疗知识迅速演变或处理训练数据中未充分代表的罕见疾病组合时,系统面临处理边缘案例的挑战。

  3. 未来研究计划:包括在最先进的MedQA数据集上进行实验,以验证框架的优越性,并将其与其他知名模型进行比较。

  4. 数据资源的依赖性:系统对高质量医疗数据的依赖性强,这在医疗数据资源有限的地区部署时可能是一个挑战。

  5. 多智能体协调的复杂性:随着医学领域的扩展,系统在协调多个专家智能体方面面临越来越复杂的挑战,需要更复杂的协调机制。

关键问题及回答

问题1:KG4Diagnosis框架在知识图谱构建过程中采用了哪些关键技术?

  1. 数据分块和分段:将医疗文档分段成符合知识图谱上下文约束的数据块。

  2. 语义驱动的实体和关系提取:利用BioBERT模型和医学本体(如SNOMED-CT和UMLS)从分段的数据块中提取实体和关系。

  3. 知识图谱构建:基于提取的实体和关系构建知识图谱。

  4. LLM增强的知识图谱:利用LLMs识别超出BioBERT提取能力的实体和关系,并将其集成到知识图谱中。

  5. 专家引导的推理:通过专家验证确保知识图谱的质量和准确性,并通过专家验证的关系扩展知识图谱。

问题2:KG4Diagnosis框架如何防止大型语言模型(LLMs)在医疗诊断中的幻觉问题?

KG4Diagnosis通过多层验证机制来防止LLMs的幻觉问题。具体方法包括:

  1. 多智能体验证:在知识图谱构建过程中,利用多个智能体(如全科医生代理和特定领域代理)进行协同验证,确保提取的实体和关系的准确性和可靠性。

  2. 知识图谱约束:构建的知识图谱本身作为一个约束系统,通过专家验证的关系和实体来限制和修正不准确的推断。

  3. 专家引导的推理:通过专家手动验证和修正知识图谱中的关系和实体,确保其质量和准确性。验证后的知识将被用于训练大规模模型,以进一步扩展和改进知识图谱。

问题3:KG4Diagnosis框架的分层多智能体结构是如何设计的?其主要功能是什么?

KG4Diagnosis的分层多智能体结构包括全科医生大型语言模型(GP-LLM)和多个特定疾病领域的专业顾问大型语言模型(Consultant-LLMs)。其主要功能如下:

  1. GP-LLM:作为初级诊断代理,负责分析用户查询并进行初步诊断。如果GP-LLM的诊断置信度低于某个阈值或查询属于需要专家诊断的复杂病例,则将查询转交给相应的Consultant-LLM。

  2. Consultant-LLMs:针对特定医学领域进行优化,例如风湿病学、心脏病、内分泌学和风湿病学。每个Consultant-LLM根据自己的领域知识和临床指南进行诊断,并提供专业的诊断建议。

  3. 智能体间通信协议:确保案例的无缝转移和协作细化,GP-LLM根据Consultant-LLM的反馈更新其知识库。

  4. 转诊决策阈值:定义转诊的数学条件,确保在必要时及时转诊给专家代理。

  5. 高级诊断与多智能体协作:对于需要多个顾问-LLMs输入的复杂查询,计算最终诊断置信度,确保诊断结果的准确性和全面性。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值