LLM-based Agent评估综述!

过去的大语言模型(如ChatGPT)像“知识百科”,只能一问一答。但如今的AI智能体(LLM-based agents)已经进阶为“行动派”——它们能规划任务、调用工具(比如订机票)、记住对话历史,甚至自我纠错。

但问题来了:如何判断这些AI助手是否靠谱

就像人类需要考试,Agent也需要一套科学的评估体系。本文首次系统性梳理了Agent的“考场规则”,覆盖从基础能力到专业场景的全面测评。

论文:Survey on Evaluation of LLM-based Agents
链接:https://arxiv.org/pdf/2503.16416

四大核心能力

规划与推理

agent能否像人类一样,把复杂任务拆解成小步骤?比如解决数学题时,先列公式再计算。

  • 经典考题:数学题(GSM8K)、多步骤问答(HotpotQA)

  • 弱点暴露:当前agent擅长短期规划,但长期战略(如策划一周旅行)仍吃力。

工具调用

AI需要调用外部工具(如搜索引擎、计算器)完成任务。评估重点包括:

  • 精准匹配:用户说“订明天北京的酒店”,AI能否正确调用酒店预订API?

  • 复杂场景:参数不明确时(如“找人均200元的餐厅”),AI能否推理出隐含条件?

案例:伯克利函数调用排行榜(BFCL)像“工具使用月考”,持续更新难度。

自我反思

AI犯错后能否通过反馈修正答案?例如:

  • 写代码报错时,能否根据错误提示重新生成正确代码?

  • 当前评测大多依赖粗粒度指标(最终答案是否正确),未来需细化到每一步的反思质量。

记忆系统

AI如何记住用户偏好或历史对话?

  • 短期记忆:实时处理当前对话(如客服记录用户需求)。

  • 长期记忆:跨会话保留关键信息(如记住用户是素食主义者)。

研究发现:某些短上下文模型+记忆系统,性能可媲美长上下文模型!

应用场景评估

网页操作

早期测试在简化环境中进行(如点击按钮),现在转向真实网页动态交互:

  • WebArena:模拟真实网站界面,要求AI完成购物、信息查询等任务。

  • 致命弱点:安全性(如避免误点广告)和政策合规性仍缺乏评测。

编程助手:GitHub真实问题大考验

编程AI的评测从“刷算法题”转向解决真实GitHub问题:

  • SWE-bench:从GitHub抓取真实Issue,要求AI修复Bug或添加功能。

  • 残酷现实:顶尖AI的通过率仅2%,复杂任务(如跨文件修改)仍是难关。

Agent能否替代科学家?

评测覆盖科研全流程:

  • 创意生成(提出新研究假设)

  • 实验设计(设计可执行的方案)

  • 论文评审(生成同行评议反馈)

扎心结论:AI在单任务表现尚可,但跨任务切换(如边写代码边查文献)容易翻车。

对话机器人:如何让客服agent不翻车

对话AI需同时满足用户需求和公司政策:

  • τ-Bench:模拟航空客服场景,测试AI能否正确调用数据库并合规应答。

  • 用户模拟器:用另一个AI扮演“刁钻用户”,考验智能体的应变能力。

通用智能体评估

GAIA基准:466道人类设计的现实问题,涵盖推理、多模态理解、网页导航等。
虚拟职场测试

  • AgentCompany:模拟软件公司,AI需写代码、开会、协调同事。

  • SWE-Lancer:让AI接“自由职业编程任务”,按完成度赚取虚拟报酬。

结果:AI在简单任务上表现尚可,但复杂项目(如连续工作一周)漏洞百出。

评估框架

主流框架(如LangSmith、Google Vertex AI)提供三大功能:

  1. 实时监控:记录AI每一步操作(如调用哪些工具)。

  2. 多维度评分

  • 最终答案正确性

  • 步骤合理性(如是否绕远路)

  • 成本效率(耗时、API调用费用)

  • 人工介入:允许人类审核争议结果。

  • 未来三大挑战与机遇

    1. 从“做题家”到实战专家

    • 当前评测仍依赖静态题库,未来需动态更新(如模拟突发网络故障)。

  • 安全与成本:不能只看成绩单

    • 忽视安全性的AI可能泄露隐私或执行危险操作。

    • 成本指标(如耗电量)将影响商业落地。

  • 自动化的终极目标

    • 用AI自动生成测试题(如让GPT-4出题考GPT-5)。

    • 实现全天候、低成本的“AI自我进化循环”。

    最后,“评估不是为了淘汰AI,而是为了让它更懂人类。”


    备注:昵称-学校/公司-方向/会议(eg.ACL),进入技术/投稿群

    id:DLNLPer,记得备注呦

### 关于 Guardian 运行时框架的文档与实现细节 Guardian 是一种运行时框架,旨在支持基于大语言模型 (LLM) 的用户界面探索。其核心目标是利用 LLM 技术来增强用户体验并简化复杂系统的交互过程[^1]。 #### 主要特性 该框架的主要特点包括以下几个方面: - **动态上下文感知**:Guardian 能够实时分析用户的输入以及当前的应用状态,并据此调整响应行为。 - **自适应学习能力**:通过持续收集用户反馈数据,Guardian 不断优化自身的预测能力和推荐策略。 - **模块化设计架构**:整个系统被划分为多个独立组件,便于开发者针对具体需求定制扩展功能。 以下是构建这样一个框架可能涉及的关键技术要点: #### 数据流处理机制 为了有效管理和传递信息,在内部实现了高效的数据管道解决方案。此部分负责接收来自前端的各种事件触发信号,并将其转化为适合传送给后端 AI 模型的形式。 ```python def process_event(event_data): """ 处理接收到的UI事件数据 参数: event_data(dict): 包含事件详情的信息字典 返回值: processed_result(str): 经过初步解析后的字符串表示形式的结果 """ try: # 对原始数据做必要的清理工作 cleaned_info = clean_input(event_data) # 将清洗过的资料转换成可供后续使用的标准格式 formatted_message = format_for_model(cleaned_info) return formatted_message except Exception as e: log_error(e) ``` #### 权限管理集成 如果计划在一个完整的 Web 应用环境中部署,则还需要考虑安全性因素。此时可以借助 `django-rest-framework-guardian` 提供的支持,无缝衔接既有业务逻辑的同时保障敏感操作的安全性[^2]。 例如定义某些特定视图只允许拥有相应对象级别权限的角色访问: ```python from rest_framework import permissions, viewsets import guardian.shortcuts class SpecialResourceViewSet(viewsets.ModelViewSet): permission_classes = [permissions.DjangoObjectPermissions] def get_queryset(self): user = self.request.user queryset = super().get_queryset() accessible_items = guardian.shortcuts.get_objects_for_user( user, 'app_name.view_specialresource', klass=queryset.model ) return queryset.filter(id__in=[item.id for item in accessible_items]) ``` 以上代码片段展示了如何结合 DRF 和 django-guardian 实现更精细的访问控制规则设定方法。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值