Meta要放大招了!
扎克伯格刚刚透露,Llama 4的预训练工作已经启动,这可能是Meta在AI领域的一次重大飞跃。
那么,Llama 4到底会有多强?
它能否追上OpenAI的GPT-4o和o1呢?
Llama 4:推理能力大升级
Meta AI副总裁Manohar Paluri向AIM透露,Llama 4不仅能"计划",还能实时评估决策并根据情况调整。
这意味着什么?
简单来说,Llama 4将具备更强大的推理能力。
它不再只是按部就班地执行指令,而是能够像人类一样思考、评估、调整。这种迭代式方法,结合"思维链"等技术,将帮助Llama 4在复杂任务中表现更出色。
自监督学习:Llama的秘密武器
Meta表示,Llama模型使用**自监督学习(SSL)来获取广泛的知识表示。这与当前主流的RLHF(基于人类反馈的强化学习)**方法形成鲜明对比。
Paluri解释道:“自监督学习让模型能够从海量数据中自主获取通用知识。而RLHF则专注于特定任务的对齐,就像在模型完成特定动作后给它说’干得好’或’再试一次’。”
这将使得Llama在生成高质量合成数据方面表现出色,特别是对于印度语言等资源匮乏的语言。
这也解释了为什么Llama成为了合成数据生成的首选工具。
Llama 4 何时问世?
扎克伯格在接受AI博主Rowan Cheung采访时透露,Meta已经为Llama 4设置了计算集群和数据基础设施。
他预计Llama 4将是对Llama 3的重大改进。
Meta产品副总裁Ragavan Srinivasan暗示,**"**下一代"Llama模型可能会在2025年发布。新模型将具备原生集成、扩展的记忆和上下文能力、跨模态支持,并扩大第三方合作。
Paluri开玩笑说,如果问扎克伯格发布时间,他可能会说"今天",这也体现了Meta在AI开发上的迫切心情。
量化让AI更轻便
最近,Meta还推出了Llama 3.2模型的量化版本。
这项技术能将模型大小减少56%,内存使用量减少41%,同时将推理速度提高4倍。这意味着Llama模型将更容易在各种设备上运行,为AI的广泛应用铺平道路。
随着Llama 4的即将到来,AI领域的竞争似乎正在升温。
你认为Meta能否通过这次升级追上或超越OpenAI的GPT-4o和o1呢?
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。