2025深度学习发论文&模型涨点之——GNN+Transformer
图神经网络(GNN)和Transformer的结合是近年来的研究热点。这种结合不仅能够让两者发挥各自的优势,还能推动模型的创新,提高处理图数据的效率和性能。具体来说,通过利用Transformer,可以扩展GNN的感受野,包括那些距离中心节点较远的相关节点。相对地,GNN也可以帮助Transformer捕捉复杂的图拓扑信息,并从相邻区域高效地聚合相关节点。
除了推荐系统和图表示学习,GNN+Transformer还可以在其他领域进行更广泛的应用探索,如生物信息学、社交网络分析、知识图谱等。研究如何将GNN+Transformer的模型应用于这些领域,解决实际问题,具有重要的研究价值和应用前景。
我整理了一些GNN+Transformer【论文+代码】合集,需要的同学公人人人号【AI创新工场】自取。
论文精选
论文1:
[ICLR] Graph Neural Networks with Learnable Structural and Positional Representations
具有可学习结构和位置表示的图神经网络
方法
LSPE架构:提出了一种新颖的通用架构LSPE(Learnable Structural and Positional Encodings),将结构和位置表示解耦,使网络能够同时学习这两种基本属性。
随机