GNN+Transformer=全局与局部完美融合!

2025深度学习发论文&模型涨点之——GNN+Transformer

图神经网络(GNN)和Transformer的结合是近年来的研究热点。这种结合不仅能够让两者发挥各自的优势,还能推动模型的创新,提高处理图数据的效率和性能。具体来说,通过利用Transformer,可以扩展GNN的感受野,包括那些距离中心节点较远的相关节点。相对地,GNN也可以帮助Transformer捕捉复杂的图拓扑信息,并从相邻区域高效地聚合相关节点。

除了推荐系统和图表示学习,GNN+Transformer还可以在其他领域进行更广泛的应用探索,如生物信息学、社交网络分析、知识图谱等。研究如何将GNN+Transformer的模型应用于这些领域,解决实际问题,具有重要的研究价值和应用前景。

我整理了一些GNN+Transformer【论文+代码】合集,需要的同学公人人人号【AI创新工场】自取。

论文精选

论文1:

[ICLR] Graph Neural Networks with Learnable Structural and Positional Representations

具有可学习结构和位置表示的图神经网络

方法

      LSPE架构:提出了一种新颖的通用架构LSPE(Learnable Structural and Positional Encodings),将结构和位置表示解耦,使网络能够同时学习这两种基本属性。

      随机

      评论
      添加红包

      请填写红包祝福语或标题

      红包个数最小为10个

      红包金额最低5元

      当前余额3.43前往充值 >
      需支付:10.00
      成就一亿技术人!
      领取后你会自动成为博主和红包主的粉丝 规则
      hope_wisdom
      发出的红包
      实付
      使用余额支付
      点击重新获取
      扫码支付
      钱包余额 0

      抵扣说明:

      1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
      2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

      余额充值