所有软件都应该跟AI打通。比如我们最常用的浏览器。
当你上网冲浪,突然想问些什么或者想生成点什么,这时还要特意打开个网页(比如ChatGPT),或者切换到别的APP(比如Obsidian),这就特别麻烦、有点不爽。
于是,Brave浏览器就来了。这款产品存在应该有好几年了。免广告之类的常规功能就不说了,它最吸引我的点在于,可以跟本地大模型打通,比如在自己的电脑上运行千问之类的,然后去实现我刚才说的那些场景功能。
大家想尝试的话,记得下载Nightly版本。这是测试版本,每晚更新。下载好了一路安装。搞定之后,来到设置页面,点击这个Leo——这是他们给自己的AI Assistant起的名字。然后在添加模型的设置里,跟Ollama关联上。
Ollama是目前特别主流的在本地跑开源大模型的工具。你可以去他们官网下载软件,然后在终端里通过一行命令就可以下载你想要的大模型,比如我用得最多的qwen2。
当软件和模型都准备完成后,打开Ollama,你会看到,它会驻留在状态栏里。每当要调用大模型的时候,它才会启动。好处是可以一直挂着,坏处是第一次启动的时候可能得稍等个差不多10秒,需要把大模型加载一下。一旦启动起来就特别快了,真的比云端的爽多了。
要把Brave跟Ollama关联上很简单。如果你像我一样没有对Ollama做一些设置调整的话,那就按照提示,把地址填进去,把要跑的模型名称填进去。只要名称对得上,那基本不会有问题。
回到前端的交互页面,从侧边栏可以打开Leo AI。官方有提供大模型,不过咱们这边是要用本地的,所以选择刚才设置好的千问。直接对话交流完全没问题。要结合正在浏览的网页的话,有两个方式:
第一,可以在网页当中选中一部分文字,右键就能看到官方预设好的AI功能,比如总结之类的。
第二,把输入框上边这个按钮勾选上之后,就会自动把当前浏览的网页给到大模型作为回答参考。
不过我发现,这不是我们平时用RAG的那种处理方法。因为我试过,如果是一篇长文章的网页,它会提示只阅读了一部分,这说明它的方法很简单粗暴,就是把所有内容都作为上下文给过去。当超出上下文窗口的限制了,才会提示没有读完。
但话又说回来,如果真用RAG那套东西的话,还要搞Embedding什么的,就会变得特别重,不适合浏览网页这个场景。因为用户会不断打开新网页,并且来回切换的。
目前Brave浏览器的AI功能还属于测试阶段。就像前边说的,我觉得浏览器和AI打通特别有必要。Brave这个大方向是OK的。不过,大厂肯定会跟进,比如Chrome,绝对会通过Gemini实现同样的功能。对于Brave这种产品来说,活下来的一个方法是,给到用户更多自由。我特别希望它后续能加上更多自定义功能,至少把模型提示词先放出来,肯定能提升日常使用频率。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。