医图顶会 MICAAI‘24 Perspective+ Unet: 增强分割的双路径融合和高效非局部注意力

论文信息

题目:Perspective+ Unet: Enhancing Segmentation with Bi-Path Fusion and Efficient Non-Local Attention for Superior Receptive Fields
Perspective+ Unet: 增强分割的双路径融合和高效非局部注意力以获得卓越的感受野

论文创新点

  1. 双路径策略:作者提出了一个双路径编码器,它结合了传统卷积和扩张卷积的结果。这种设计不仅保持了局部接受域,而且显著扩展了它,使得在保持细节敏感性的同时,更好地理解图像的全局结构成为可能。关键词:双路径编码器、传统卷积、扩张卷积。

  2. 高效的非局部变换器块(ENLTB):该框架包含了一个高效的非局部变换器块,它利用核函数近似有效地捕捉长距离依赖性,计算和空间复杂度为线性。这个块建立在标准非局部注意力机制之上,以一小部分通常的计算开销提供全局视角。关键词:非局部变换器块、核函数近似、长距离依赖性。

  3. 空间跨尺度集成器(SCSI):为了增强局部和全局特征表示之间的协同作用,作者设计了空间跨尺度集成器,以确保在不同阶段之间一致地整合信息,确保在受益于宏观上下文的同时保留细粒度细节。

摘要

医学图像的精确分割对于提取关键的临床信息至关重要,这在提高诊断准确性、制定有效的治疗计划和改善患者预后中发挥着关键作用。尽管卷积神经网络(CNN)和非局部注意力方法在医学图像分割方面取得了显著的成功,但它们要么因依赖局部特征而难以捕捉长距离空间依赖性,要么在尝试通过全局注意力机制解决这一问题时面临显著的计算和特征集成挑战。为了克服医学图像分割中存在的限制,作者提出了一种新颖的架构,Perspective+ Unet。该框架具有三个主要创新点:(i)它在编码器阶段引入了双路径策略,结合了传统和扩张卷积的结果。这不仅保持了局部接受域,而且显著扩展了它,使得在保持细节敏感性的同时,更好地理解图像的全局结构成为可能。(ii)该框架包含了一个高效的非局部变换块(ENLTB),它利用核函数近似有效地捕捉长距离依赖性,计算和空间复杂度为线性。(iii)采用了空间跨尺度集成器策略,用于在模型阶段之间合并全局依赖性和局部上下文线索,精心提炼各个层次的特征,以协调全局和局部信息。在ACDC和Synapse数据集上的实验结果证明了我们提出的Perspective+ Unet的有效性。

关键字

分割 · 双路径策略 · 高效非局部变换器

2 方法

我们提出的Perspective+ Unet采用了编码器-瓶颈-解码器配置,具体网络工作流程如图1所示。在本章中,我们将详细介绍网络中的三个模块,从双路径残差块开始。

2.1 双路径残差块(BPRB)

扩大接受域的大小以提高准确性一直是3D医学图像分割研究的重点。传统上,研究人员试图通过堆叠全局模块来实现这一点,虽然扩大了视野,但往往会丢失局部区域信息:捕捉全局信息的更广泛的接受域冒着忽视关键局部细节的风险。为了解决这一挑战,我们创新了BPRB,一个双路径设计,平衡了局部和全局信息处理,以增强分割。一条路径使用扩张卷积来扩大接受域,理解更广泛的空间信息,但由于其间距方法,引入了特征不连续性。为了解决这个问题,BPRB包含了另一条专注于捕捉详细特征并保持局部信息连续性的路径,从而实现了全局和局部信息处理之间的最佳平衡。提出的BPRB可以表述为:

其中 , , 分别是阶段s+1中的局部、全局和最终特征。fs和fk s分别是阶段s中的卷积和扩张卷积,扩张率分别为k。

2.2 高效非局部变换器块(ENLTB)

捕捉输入图像中的全局信息对于增强特征表示至关重要,这直接有助于分割的有效性。为了应对这一点,我们将ENLTB作为一个战略手段来重新配置编码器产生的特征图,旨在实现增强的上下文理解和表示多样性。ENLTB采用了高效非局部自注意力(ENLSA)机制,通过将传统的指数核 替换为更计算效率高的无偏估计 ,从而大大加快了处理速度。具体地,,其中 可以被重新参数化为线性映射。与传统变换器的二次计算复杂度相比,ENLSA模块仅在 Q 和 K 的矩阵投影计算中具有 O(2N) 的复杂度,随后在 和 V 之间的乘法中具有 O(N) 的复杂度。这种设计确保了整体计算过程与输入大小 N 成线性关系,显著降低了计算成本。我们通过将注意力机制替换为 ENLSA 来重新设计变换器,构建了 ENLTB。这种修改简化了特征表示的增强。ENLTB的第一层专门处理来自编码器的特征。然而,随后的 ENLTB 层却聚合了直接从编码器传递的特征和通过补丁合并从前面的 ENLTB 层传递的特征,从而巧妙地混合了细粒度细节和粗略的语义信息。ENLTB 过程可以表示为:

其中 xs 的定义与第 2.1 节中介绍的一致。, 分别表示第 s 阶段的 ENLTB 的输入和输出。LN 和 MLP 分别代表层归一化和多层感知器。ENLTB 的主要思想是使用线性近似来降低非局部注意力模块的计算复杂度。在非线性变换下,特征空间中的显著区域对小的扰动表现出鲁棒性,保留了在近似表示中的显著性。这种方法使我们能够强调对最终任务影响最大的特征点,同时最小化对分割质量的影响。

2.3 空间跨尺度集成器(SCSI)

协作特征相互作用对于丰富网络的解释性能至关重要,因此我们设计了 SCSI 模块,以确保详细图像复杂性被分割得既精确又细腻。SCSI 从补丁展平开始,每个 ENLTB 产生的特征图被收集并合并成一个统一的序列。随后,一个变换器处理该序列,支持不同特征之间的连接学习。然后,将精炼后的特征序列仔细映射回每个尺度的原始特征图,保持其原始连接顺序。SCSI 过程可以表述为:

其中 和 分别表示第 s 阶段的 ENLTB 和 SCSI 的输出。concat 代表连接操作。

3 实验

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### UNet 编码器网络架构 UNet 是一种常用于分割任务的深度学习模型,最初由 Ronneberger 等人在学影像分析中提出。该架构的特点在于其跳跃连接的设计,能够有效地保留空间信息并提高分割精度。 #### 架构概述 UNet 的基本结构可以分为两个部分:收缩路径(Encoder)扩展路径(Decoder)。对于编码器版本而言,在传统单编码器的基础上引入了第二个编码器来增强特征提取能力: - **第一个编码器**负责捕捉输入像中的低级特征,如边缘、纹理等; - **第二个编码器**则专注于更高级别的语义理解,帮助更好地识别复杂模式[^1]。 这种设计使得模型能够在不同尺度上融合来自多个层次的信息,从而提升最终预测的质量。 #### 实现细节 以下是 Python 中基于 PyTorch 框架的一个简化版 UNet 编码器网络实现示例: ```python import torch.nn as nn class DoubleConv(nn.Module): """(convolution => [BN] => ReLU) * 2""" def __init__(self, in_channels, out_channels): super().__init__() self.double_conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): return self.double_conv(x) class UNetDualEncoder(nn.Module): def __init__(self, n_channels, n_classes): super(UNetDualEncoder, self).__init__() # First Encoder Path self.inc_1 = DoubleConv(n_channels, 64) self.down1_1 = nn.MaxPool2d(2) self.down2_1 = nn.MaxPool2d(2) # Second Encoder Path (can have different input channels or same) self.inc_2 = DoubleConv(n_channels, 64) self.down1_2 = nn.MaxPool2d(2) self.down2_2 = nn.MaxPool2d(2) # Middle part where both encoders meet self.middle = DoubleConv(128, 256) # Decoder path with concatenation from corresponding levels of each encoder self.up1 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.conv_up1 = DoubleConv(384, 128) self.up2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.conv_up2 = DoubleConv(192, 64) self.outc = nn.Conv2d(64, n_classes, kernel_size=1) def forward(self, x): # Encoding paths x1_1 = self.inc_1(x) x2_1 = self.down1_1(x1_1) x3_1 = self.down2_1(x2_1) x1_2 = self.inc_2(x) x2_2 = self.down1_2(x1_2) x3_2 = self.down2_2(x2_2) # Merge features at the bottom level merged_features = torch.cat([x3_1, x3_2], dim=1) mid_out = self.middle(merged_features) # Decoding process starts here... upsampled_mid = self.up1(mid_out) concatenated_feature_map = torch.cat([ upsampled_mid, x2_1, x2_2 ], dim=1) dec_output_level1 = self.conv_up1(concatenated_feature_map) final_upsampling = self.up2(dec_output_level1) all_levels_concatenated = torch.cat([ final_upsampling, x1_1, x1_2 ], dim=1) output_before_classification = self.conv_up2(all_levels_concatenated) logits = self.outc(output_before_classification) return logits ``` 此代码片段展示了如何构建一个具有重编码通道的基础 U-Net 结构,并通过跳过连接将这些通道的信息结合起来以改善性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值