Llama 3.2 Vision支持中文,多模态AI和图片推理

Llama 3.2 Vision,开启多模态AI的新纪元。

AI正在迅速发展,多模态模型,即那些能够解释和生成多种格式数据的模型,正在成为创新的核心。Llama 3.2 Vision 是AI领域的突破性成果,它在图像推理、视觉识别、标题生成和基于图像的问答等方面带来了无与伦比的能力。Llama 3.2 Vision拥有两个版本,11B和90B参数。

Llama 3.2 Vision的Ollama地址:https://ollama.com/library/llama3.2-vision

使用Lora版本,即可让Llama 3.2 Vision支持中文:https://huggingface.co/Kadins/Llama-3.2-Vision-chinese-lora

1 Llama 3.2 Vision特点

1.1、支持多模态

Llama 3.2 Vision 能够处理文本和图像输入,能针对不同应用场景输出文本结果。具备以下功能:

  • 手写识别:识别手写文字。

  • 光学字符识别(OCR):将图像中的文字转换为可编辑文本。

  • 图表和表格解释:解析图表和表格中的数据。

  • 图像问答:基于图像内容回答问题。

1.2、两种规模模型

Llama 3.2 Vision 提供两种不同参数规模的模型,以适应不同的应用需求:

  • 11B 参数模型:适合处理小规模项目,至少需要8GB显存。这一模型在 Hugging Face 平台上开放,致力于开源和开放科学,推动人工智能的普及和发展。了解更多

  • 90B 参数模型:专为需要高性能的任务设计,至少需要64GB显存。同样在 Hugging Face 平台提供,秉承开源精神,助力人工智能技术的民主化。了解更多

1.3、 语言支持

Llama 3.2 Vision 在文本处理方面支持多种语言,具体包括:英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。通过Lora,还可支持中文。

对于结合图像和文本的任务,目前仅支持英语。

1.4、性能

Llama 3.2 Vision 在许多领先的开源和专有多模态模型中表现优异,其性能在行业标准的基准测试中屡获高分,证明了具备卓越的技术实力。

2 开始使用 Llama 3.2 Vision

步骤1:安装 Ollama

首先,需要从ollama.ai下载最新版本(0.4)的Ollama软件。安装完成后,在终端中执行以下命令来启动Llama 3.2 Vision的不同模型:

  • 启动11B模型:

    ollama run llama3.2-vision   
    
  • 启动90B模型:

    ollama run llama3.2-vision:90b   
    

步骤2:添加图像到命令提示

在命令提示中包含图像有两种简便方法:

1)拖放图像:直接将图像文件拖拽到终端窗口。

2)指定图像路径:在命令提示中输入图像的文件路径。

3 使用示例

3.1、Python 集成

使用 Ollama Python 库将 Llama 3.2 Vision 集成到 Python 中非常简单。以下是示例:

import ollama      response = ollama.chat(       model='llama3.2-vision',       messages=[           {               'role': 'user',               'content': '这张图片里有什么?',               'images': ['image.jpg']           }       ]   )   print(response)   

3.2、JavaScript 集成

Ollama JavaScript 库可以轻松集成到 Web 应用程序中:

import ollama from 'ollama'      const response = await ollama.chat({     model: 'llama3.2-vision',     messages: [{       role: 'user',       content: '这张图片里有什么?',       images: ['image.jpg']     }]   })   console.log(response)   

3.3、使用 cURL

快速测试时,使用以下 cURL 命令:

curl http://localhost:11434/api/chat -d '{     "model": "llama3.2-vision",     "messages": [       {         "role": "user",         "content": "这张图片里有什么?",         "images": ["<base64-encoded image data>"]       }     ]   }'   

4 Llama 3.2 Vision的受益者

Llama 3.2 Vision 非常适合:

  • 开发者:适合开发图像交互应用的开发者。

  • 企业:需要高级OCR或文档处理工具的企业。

  • 数据分析师:需要从图表和表格中解读视觉数据的分析师。

  • 研究人员:探索多模态AI系统的研究人员。

5 结语

Llama 3.2 Vision不仅仅是工具,更是通往多模态AI未来的桥梁。凭借尖端的性能、语言多样性和无缝集成,这些模型赋予开发者和企业解锁创新的新水平和能力。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 调用 LLaMA 3.2 Vision 的 Python API 为了在 Python 中调用 LLaMA 3.2 Vision 的 API,可以采用如下方法: #### 安装依赖库 首先需安装必要的 Python 库来支持LLaMA 3.2 Vision 进行通信。通常情况下这涉及到 `requests` 或者特定于框架的客户端库。 ```bash pip install requests ``` 对于更复杂的场景可能还需要 Docker 其他工具的支持[^1]。 #### 初始化配置 创建一个简单的 Python 文件用于初始化连接到 LLaMA 3.2 Vision 模型的服务实例。如果是在本地环境中部署,则应确保已按照官方文档完成环境搭建并启动服务。 ```python import os from dotenv import load_dotenv load_dotenv() # 加载 .env 文件中的环境变量 # 设置模型名称其他参数 model_name = &#39;llama3.2-vision&#39; api_endpoint = f"http://localhost:8000/api/v1/models/{model_name}/predict" headers = {"Content-Type": "application/json"} ``` #### 构建请求体 构建发送给 LLaMA 3.2 Vision API 的 JSON 请求体。此部分取决于具体的应用需求,比如输入的数据格式(文本、图片等)。这里展示了一个基本的例子,其中包含了文本图像数据作为输入[^2]。 ```python import base64 from PIL import Image import io def prepare_image(image_path): with open(image_path, "rb") as image_file: encoded_string = base64.b64encode(image_file.read()).decode(&#39;utf-8&#39;) return encoded_string data = { "text_input": "描述这张照片的内容", "image_input": prepare_image("./example.jpg"), } ``` #### 发送预测请求 通过 HTTP POST 方法向指定 URL 发起请求,并处理返回的结果。注意这里的 URL 是基于假设的服务地址;实际应用时应当替换为真实的 API 地址。 ```python import json import requests response = requests.post(api_endpoint, headers=headers, data=json.dumps(data)) result = response.json() print(result[&#39;output&#39;]) ``` 上述代码片段展示了如何准备图像文件并通过 Base64 编码转换成字符串形式以便传输至服务器端解析。同时指定了要使用的模型名为 `llama3.2-vision`。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值