Google: 2025年是AI Agents元年;
Sam Altman: 2025年我们能构建出达到AGI L3的Agent。
Google trends 关于Ai Agents搜索词汇过去5年的趋势如下,最近几个月突然加速:
最新Google发布了一份关于Agents的白皮书,写的特别精彩,50多页的pdf。
Agent:AI 的新边界,从模型到智能体
现在,我们正在进入一个全新的时代,在这个时代,AI 不仅仅是模型,而是拥有自主思考和行动能力的 agent。它不仅能理解你的指令,还能像人类一样规划、推理、并利用外部工具来完成任务,那将带来怎样的变革?这正是 AI agent 的核心理念。它们超越了传统模型的局限,将 AI 的应用推向了新的高度。
Agent 的核心:不止是模型
那么,到底什么是 agent 呢?简单来说,agent 是一个能够观察世界、思考决策并采取行动的程序。它不是一个被动执行指令的工具,而是一个主动解决问题的智能体。我们可以将其拆解为以下三个核心组件:
-
模型 (Model) :这是 agent 的“大脑”,可以是任何 LLM,比如 Gemini。模型负责理解语言、进行推理和规划。你可以根据需要选择不同大小、不同功能的模型。
-
工具 (Tools) :模型再强大,也无法访问真实世界。工具就像 agent 的“双手”,让它可以与外部世界互动。比如,使用 API 查询天气,或在数据库中查找信息。
-
编排层 (Orchestration Layer) :如果说模型是 agent 的大脑,那么编排层就是它的执行机制。它负责协调模型的思考和工具的使用,让 agent 按部就班地完成任务。编排层中,我们可以使用诸如ReAct、Chain-of-Thought (CoT) 或 Tree-of-Thoughts (ToT) 等推理框架来引导 agent 进行思考。
Agent 与模型:关键区别
现在,你可能会问:“agent 和模型到底有什么区别?”这里有一个简单的对比:
下图是一个在编排层使用 ReAct 推理构建的Agent示例。它基本上通过 1-n 次思考、动作(带有输入)和观察的迭代,以及访问关键工具来尝试解决问题。
工具:连接世界的钥匙
工具是 agent 的核心能力。它们赋予了 agent 与外部系统交互的能力,包括:
-
扩展 (Extensions) :标准化连接 API 的方式,让 agent 无需关心底层实现细节,可以轻松调用外部服务。
-
函数 (Functions) :在客户端执行的自定义代码,可实现更精细的数据处理和系统控制。
-
数据存储 (Data Stores) :让 agent 可以访问外部数据源,如网站、文档、数据库等,以扩展知识面。
数据存储通常实现为向量数据库。也可以为Agent提供各种格式的数据。
增强 agent 的学习能力
除了强大的工具,我们还可以使用以下方法来增强 agent 的学习能力:
-
上下文学习 (In-context learning) :在运行时提供示例,让 agent "即时"学习如何使用工具。
-
检索式上下文学习 (Retrieval-based in-context learning) :动态检索最相关的知识和例子,来优化 agent 的决策。
-
微调 (Fine-tuning) :使用特定数据集微调模型,让 agent 在特定领域表现更出色。
Agent 的实际应用:无限可能
有了这些强大的组件和技巧,我们可以构建出各种各样的 agent。例如:
-
旅行规划助手: 根据用户的需求,查询航班、酒店,并生成行程安排。
-
代码生成器: 根据用户的描述,自动编写代码,甚至可以运行并测试。
-
智能客服: 理解用户的问题,并使用知识库和工具来提供解答。
Agent 的未来:一个新时代的开端
Agent 的发展潜力是巨大的,它不仅仅是技术的进步,更是一场思维方式的变革。随着工具的日益完善和推理能力的不断提升,agent 将逐渐成为我们工作和生活中不可或缺的一部分。
最后,别忘了:
-
构建 agent 是一个迭代过程,需要不断尝试和改进。
-
没有两个完全相同的 agent,因为它们都基于 LLM 的生成能力。
-
通过巧妙地运用工具和推理框架,我们可以打造出无限可能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。