多模态大语言模型(MLLMs)展现出卓越的通用能力,在视觉与语言推理任务中表现出色,并具备一定的跨任务泛化能力。但是,其在某些下游领域的应用能力有限。通过在下游数据上进行微调,MLLM能够灵活适配多种任务,从视觉问答到医学诊断等领域,展现出惊人的潜力。这是否意味着MLLM的下游微调已发展到足以应对不同领域的复杂挑战,并有效解决模型迁移与泛化问题的程度?不同类型的微调方法在应对这些挑战时各有哪些优势和不足?
近期,武汉大学研究团队发布了多模态大模型下游任务微调的最全综述与基准测试框架《Keeping Yourself is Important in Downstream Tuning Multimodal Large Language Model》。该研究系统性地梳理了MLLM 微调的三大策略:选择性微调(Selective Tuning),通过调整部分参数减少遗忘;附加式微调(Additive Tuning),通过添加适配模块而不改动原模型结构;以及重新参数化微调(Reparameterization Tuning),利用 LoRA 等低秩适配方法提升效率。此外,本文构建了标准化评测框架,系统性分析了不同类型微调方法的适用场景,并通过实验对比,在医学、遥感、科学问答等多个任务上进行测试,揭示不同场景下的最佳微调策略。
Ø 论文地址:https://arxiv.org/abs/2503.04543
Ø项目主页:https://github.com/WenkeHuang/Awesome-MLLM-Tuning
*任务专家化与开放世界稳定:MLLM* *下游**微调双重挑战*
本文指出,尽管 MLLM 具备强大的泛化能力,在广泛应用场景中表现优异,但在专业领域或私人数据集上的适应性仍受限。现有研究主要关注通过下游任务微调以提升性能,却忽视了下游数据与预训练数据的分布差异而导致的泛化能力下降的问题。基于此,我们提出任务专家化挑战,即 MLLM 在异质数据上表现受限,影响特定任务的应用效果。此外,微调 MLLM 时,通常侧重于优化特定任务,而忽略了一般知识遗忘的问题。下游任务学习可能导致预训练知识的“灾难性遗忘”,从而削弱模型的整体性能和适应性。为此,我们提出开放世界稳定挑战,即微调后 MLLM 可能丧失预训练阶段的知识,影响其泛化能力和开放环境下的稳定性。图 1 对这两个关键挑战进行了概述。
为了应对上述关键挑战,近年来学者们不断研究各种先进的调优策略,但是目前没有统一的分类范式。本文将 MLLM 调参策略大致可分为选择性调参、加法调参和重新参数调整,详细阐述了每种调参范式的核心思想、关键技术及其适用场景,并针对任务专家化与泛化能力稳定性等核心问题,归纳不同方法的有效性及局限性。
*基准测试与实验分析*
除了对现有研究进行归纳,本文还设计了基准测试(benchmark)来评估不同微调方法的效果。我们将数据集划分为两类:预训练(可见)数据集和下游调整(不可见)数据集,以衡量 MLLM 的泛化能力和专业化能力。预训练数据集包含训练过程中使用的数据集、以及衡量通用性能的数据集,包括 OKVQA、GQA、TextVQA、OCRVQA、COCO-Cap 和 MME,其中前五个用于评估模型在视觉问答(VQA)和字幕生成任务上的源域能力,MME 用于评估多样化世界知识的保留情况。下游调整数据集涵盖多个领域,包括科学问答、图标推理、目标指代、图像-文本匹配和遥感 VQA等任务,能够全面测试 MLLM 在不同领域的适应能力。
通过对不同的模型架构和微调方法进行系统测试,结果表明各类方法在任务专门化和泛化稳定性之间存在显著差异。全层微调(Full-ST)尽管在下游任务中表现优异,但易导致过拟合,削弱泛化能力;低秩适配(LoRA)可在保留预训练知识的同时适应特定任务,但对数据分布变化较大的任务效果受限。选择性微调(Selective Tuning),尤其是调整顶层(Top-ST)或末层(Last-ST),在平衡任务专门化与泛化稳定性方面表现出色,能有效缓解灾难性遗忘。此外,低秩适配方法相比全层微调更能减少泛化能力下降,而视觉投影模块(Vision Projector)的调整有助于适应视觉域迁移,但在视觉特征相似的任务中,冻结该模块通常更优。因此,不同微调方法各有优劣,需根据具体任务需求选择最适策略,以优化模型的适应性与稳定性。
图4.
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。