浅尝ResNet18模型

在残差结构提出之前,根据实验表明,随着网络层不断的加深,模型的准确率起初会不断的提高,达到最大饱和值,然后随着网络深度的继续增加,模型准确率不但不会继续增加,反而会出现大幅度降低现象,即 模型训练过程和测试过程的 error 比浅层模型更高

原论文将输入X(input)经过一系列处理之后得到残差F(X),若是在shortcut分支上不经过downsample处理(即不经过conv1x1卷积+BN处理),则在最终得到的残差映射函数为F(X) + X,此种结构一般用在conv_x组块中的非第一层之后的层,即用在不需要改变前后输入输出维度的层。 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值