近日,中国科学院院士、清华大学人工智能研究院名誉院长张钹在ISC.AI 2024第十二届互联网安全大会的演讲上表示,当前人工智能还没有理论,只有发展出来针对的模型和算法,它们都是针对特定领域的,软件或硬件也都是专用的,市场很小,因此到现在为止还没有发展出一个大型的人工智能产业,问题就出在这里。
中国科学院院士、清华大学人工智能研究院名誉院长张钹
张钹院士现年已经89岁高龄,过去几十年里,他在清华大学培养了一批人工智能人才,是中国人工智能学科的奠基人之一。当前不少火热的“清华系”大模型企业如生数科技、智谱AI、面壁智能、Kimi等,均受益于在清华打下的技术基础,核心技术人才或直接或间接师承于张钹。
本次演讲,张钹院士不仅指出了当前人工智能技术存在的缺陷和问题,也给出了未来改进的方向。
当考虑基础模型时,要考虑3大能力与1大缺陷
在张钹院士看来,因为理论的限制,人工智能产业的前一阶段必须要结合具体的应用领域来发展,因此这一阶段发展出的人工智能属于专用人工智能,即“弱”人工智能。不过,他也指出,目前基础模型在语言问题上做到了通用,“我们考虑基础模型的时候需要考虑3大能力与1大缺陷,这点是非常重要,是我们考虑今后产业发展的出发点。”
他解释称,大语言模型的强大之处体现在强大的语言生成能力、强大的人机自然交互能力和强大的举一反三能力,“大语言模型的语言生成属于开放领域,能够生成多样化的结果,所有输出人类都可以理解,即便是‘胡说八道’我们也可以理解在胡说什么,这一点非常重要。人类跟机器在开放领域进行自然语言对话,我们之前以为要通过几代人的努力才能达到这个目标,但大家没想到的是2020年这个目标已经达到了。”
张钹院士表示,大模型的缺陷就是“幻觉”, “因为我们要求它有多样性的输出,必然它会产生错误。这个错误跟机器都会产生错误非常不一样,机器产生的错误往往是我们可以控制的,这个错误是本身的错误,是一定会发生的,而且我们不可控,所以,这点也是我们后面考虑它应用需要考虑的问题。”
结合3大能力与1大缺陷,张钹院士总结出了大模型当前适合应用的场景:对错误的容忍程度要高。 他表示从产业情况来看,大模型的应用呈现“U”字形——前部的规划、设计要求内容多样性,后部的服务、推荐也要求多样性,同时对错误的容忍程度较高,但中间部分就需要根据情况来考虑使用。
尽管存在问题,张钹院士还是表示不论怎样“模型是一定要用的”,“因为有了模型底座以后,应用的效率和质量一定会提高。过去的应用场景我们是在空的计算机上开发软件提供服务,空的计算机相当于文盲,而现在有了大模型,平台至少是个高中生,开发效率一定会提高,以后的方向一定是这样。”
张钹院士重点分析了幻觉出现的根本原因,他认为模型的根本限制在于目前所有的机器所做的工作都是外部驱动,人类教它怎么做,而不是自己主动做。同时,它生成的结果受提示词的影响非常大,与人类是在内部意图的控制下完成工作有明显的区别。
大模型未来的4个发展方向:对齐、多模态、智能体、具身智能
张钹院士介绍,未来大模型有4个发展方向,对如何改进大模型非常重要。
其一是与人类对齐,“大模型没有判断对错的能力,自己不能自我更新,都是人类驱动下去更新的,不突破这一点,机器就不能自我进化。大模型需要外部的提示,所以在人类的驱动下改正大模型的错误是我们做的第一件工作。”
其二是多模态生成,“多模态生成将来对产业的发展非常重要,因为大家看到大模型主要是生成文本,但是我们用同样的办法生成图像、声音、视频、代码之后,生成的水平是跟人类的水平接近的。我们现在为什么图像能生成的那么好,主要是把图像跟文本挂钩。所以,最本质的是文本处理的突破。”
其三是AI Agent(智能体)的概念,“要把大模型和周围的虚拟环境结合起来,让环境提示它的错误,因为一件事做了之后才知道对和错,因此智能体的概念非常重要,让环境提示智能体,让它有反思的机会,去改正错误。”
其四是具身智能,“通过加上机器人,让大模型在物理世界也能够工作。将来如何发展通用机器人?我认为要‘软件通用,硬件多样化’,马斯克宣传人形机器人,但我认为将来不止限于人形机器人。”
在张钹院士看来,**发展第三代人工智能,首先必须建立理论,**大模型的存在没有理论可以解释,所以才会引起各种困惑和误解,机器发展规模越来越大,理论不能解释就会引起恐慌,得到安全、可控、可信、可靠、可扩展的人工智能技术,在这一领域没有发展完善之前,人工智能始终是存在安全问题的。
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】