基于DeepSeek-V3的真Agent智能体,火到国外了

DeepSeek 以更低的成本训练出可以比肩 GPT-4o 的性能,不仅让缺乏算力的国产大模型看到了希望,甚至连国外网友也直呼真香。

最近看到一众国外小哥分享了一款名为 browser-use 的智能体,它可以自动使用浏览器帮你完成一些简单任务。

他们在 browser-use 中统一使用 DeepSeek 大模型

由于智能体会自主规划任务,所以 token 消耗不可控,这就要求大模型既要能打,又要价格便宜,成本可控。

browser-use 这个智能体看上去挺有趣的,并且在 GitHub 上开源了,我也忍不住安装使用了一下。

安装特别简单,一条命令搞定。然后用它完成了一个简单的任务,搜索 ‘渡码’,并打开我的博客。

browser-use 的核心是通过 LLM 的推理能力分析浏览器页面的HTML内容和文本信息,输出可执行的指令,交给浏览器自动化工具(Playwright)执行。

这些带颜色的框,就是 browser-use 提取的页面信息。

这个任务的代码也是非常简单,不到20行。

如果不想写代码,browser-use 也提供了一个webui,通过可视化方式配置任务。

不知道大家有没有关注到最近市面上涌现出一批新的Agent智能体,并且面向的都是可以自主决策、自动完成任务的真正智能体。

1.15日,OpenAI 发布首个 AI Agent 产品——Tasks,自动帮你在手机、电脑上创建提醒,如:“提醒我早发邮件给老板”。

Tasks 可能是更复杂的AI Agent产品 Operator 的雏形,我在之前的文章中提到过 Operator ,是一款可以操作电脑(Computer use)完成任务的智能体。

1.24日,清华、复旦和斯坦福的研究团队联合开发并开源了一款名为 Eko 的 Agent 开发框架,通过自然语言快速构建可用于生产的“虚拟员工”。被认为是对标 OpenAI 的 Operator 项目。

另外,MiniMax 近期开源了专为 AI Agent 设计的大模型,支持400万 token 的上下文,目的是满足Agent的持续记忆和多Agent复杂通信需求。

当然很多朋友会觉得,现在的智能体只能完成简单的任务,显得有些鸡肋,完全不如自己动手操作。

但我们看看AI编程领域,大模型刚出来时候,很多模型连冒泡排序都写不对,而现在 WinSurf、Cursor 这样AI编程工具,让不会写代码的人都能开发项目。

智能体这一新趋势同样值得我们关注,去见证其一步步的演进与突破。


如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

在这里插入图片描述

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在这里插入图片描述

### DeepSeek Agent 实际应用案例 DeepSeek Agent 已经被广泛应用于多个领域,特别是在自动化和智能化方面表现出色。对于希望深入了解其实战应用的用户来说,可以从以下几个具体应用场景入手: #### 港口船舶调度优化实例 在港口管理中,利用 DeepSeek 进行船舶调度可以极大提高工作效率并降低成本。通过对历史数据以及实时状况的数据收集与预处理[^2],构建起适合特定环境下的预测模型。此过程涉及到了解不同时间段内的船只流量模式、天气条件影响等因素。 ```python import pandas as pd from sklearn.model_selection import train_test_split # 假设我们有一个包含过去几年内所有进出港记录的数据集 data = pd.read_csv('port_records.csv') # 对原始数据进行清洗和转换, 例如去除缺失值、异常值检测等操作 cleaned_data = data.dropna().reset_index(drop=True) # 将时间戳转化为易于分析的形式 cleaned_data['timestamp'] = pd.to_datetime(cleaned_data['date']) # 提取特征用于后续建模 features = cleaned_data[['ship_type', 'weather_condition']] labels = (cleaned_data['wait_time'] > 1).astype(int) # 是否等待超过一天作为标签 X_train, X_val, y_train, y_val = train_test_split(features, labels, test_size=0.2, random_state=42) ``` 这段代码展示了如何准备用于训练机器学习模型的数据集,该模型旨在预测哪些情况下可能会发生长时间延误,进而辅助决策者做出更合理的安排。 --- 除了上述提到的例子之外,还有许多其他行业也在积极探索 DeepSeek Agent 的潜力,比如金融风险控制、医疗健康监测等领域都取得了不错的成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值