无论你是哪个行业的开发人员,G1这里都有值得学习的地方!
一、硬件架构与技术图谱
1. 核心驱动单元:高精度关节模组
G1的关节模组采用 自研一体化设计,整合了以下核心组件:
- 无框力矩电机:
- 最大扭矩达 120Nm(EDU版本),支持瞬时过载能力,通过双编码器实现位置与速度的闭环控制。
- 响应时间 <1ms,满足动态平衡与快速动作需求。
- 行星减速器:
- 减速比优化设计(约 10:1),兼顾高扭矩输出与低背隙(<0.1°),确保运动精度。
- 双编码器系统:
- 主编码器(磁编码器):用于电机转子位置检测,分辨率 17bit/rev。
- 副编码器(光学编码器):检测输出端位置,精度 0.01°,消除减速器传动误差。
技术优势:
- 模块化设计降低维护成本,支持热插拔更换。
- 自研驱动器集成 FOC(磁场定向控制)算法,实现电流环控制频率 20kHz,保障实时性。
2. 感知系统:多模态传感器融合
G1的感知层由 多传感器协同 构成:
- Intel RealSense D435 深度相机:
- 提供RGB-D数据,用于物体识别与场景重建,精度 ±1% @ 2m。
- LIVOX-MID360 3D激光雷达:
- 扫描频率 20Hz,探测距离 40m(10%反射率),支持SLAM建图。
- 六轴IMU(惯性测量单元):
- 加速度计量程 ±16g,陀螺仪量程 ±2000°/s,用于实时姿态解算。
- 触觉阵列(EDU版):
- 灵巧手集成 12个触觉传感器,分辨率 0.1N,支持精细抓握反馈。
数据融合:
- 传感器数据通过 EtherCAT总线 传输至中央控制器,融合频率 1kHz,延迟 <2ms。
3. 计算与控制架构
G1采用 分层分布式控制架构:
- 上位控制器(NVIDIA Jetson Orin):
- 算力 275 TOPS(EDU版选配),运行 UnifoLM(统一大模型),负责高级任务规划与AI推理。
- 嵌入式实时控制器(ARM Cortex-R5 + FPGA):
- 运动控制频率 1kHz,实现 全身43自由度 的协同控制。
- 集成 状态观测器 与 MPC(模型预测控制)算法,动态调整关节力矩。
通信协议:
- 关节模组间通过 CAN FD总线 通信,带宽 5Mbps,周期 1ms。
- 与上位机采用 ROS 2 框架交互,支持 DDS(数据分发服务) 实时消息传递。
二、软件系统与技术栈
1. 运动控制算法
- 模仿学习 + 强化学习框架:
- 基于人类动作数据生成初始策略,再通过仿真环境(Isaac Sim/MuJoCo)进行强化训练,优化步态与平衡。
- 动态平衡算法:
- 采用 ZMP(零力矩点) 与 CPG(中枢模式发生器) 混合控制,适应复杂地形。
2. 开发工具链
- SDK与API:
- 视觉识别API:集成YOLOv11目标检测,推理延迟 <30ms。
- 运动控制API:提供关节轨迹规划接口(五次多项式插值),支持自定义动作脚本。
- 仿真到实机部署:
- 通过 NVIDIA Omniverse 实现数字孪生验证,减少实机调试风险。
三、技术突破与行业价值
- 成本控制创新:
- 自研关节模组成本 约8050元/个(对比进口降低60%),推动整机售价至 9.9万元。
- 实时性保障:
- 从传感器输入到电机响应的全链路延迟 <5ms,达到工业级控制标准。
- 开放性生态:
- EDU版支持二次开发,开源 UnitreeG1操作数据集,加速科研与教育应用。
四、架构图示(简化版)
传感器层 → 数据融合 → 实时控制器(运动规划) → 关节驱动
↑ ↓
上位控制器(AI决策) ← ROS 2通信
技术图谱关键词:自研关节模组、多传感器融合、分层实时控制、仿生强化学习、低成本高精度驱动。