规划框架 | EGO planner 规划算法流程与ROS仿真

目录

1 参考资料

2 前言

3 FAST-planner与EGO-planner

        3.1 两算法的特点

        3.2 两算法的对比

4 EGO-plaanner框架 

4.1 如何取代ESDF

4.2 总体EGO planner框架

5 轨迹优化

平滑项:

碰撞项:

动力学可行项:

6 时间重分配

7 ros仿真实现

        快速实现:

        标准编译:


1 参考资料

课程与ppt:移动机器人运动规划-深蓝学院 - 专注人工智能与自动驾驶的学习平台

代码链接:EGO-planner

论文链接:https://arxiv.org/abs/2008.08835

2 前言

        在机器人技术迅速发展的今天,自主导航已成为实现机器人智能化的关键技术之一。EGO planner作为一种先进的路径规划算法,在解决复杂环境下的机器人导航问题上展现出了卓越的能力。它特别适用于需要高精度避障和动态适应性的场景,如无人机、无人驾驶车辆等。本文旨在深入探讨EGO planner的核心原理、规划算法流程,并通过ROS(Robot Operating System)平台上的实际案例来展示其在仿真环境中的应用效果。希望通过本文能够让读者对EGO planner有更加全面而深刻的理解,并为相关领域的研究人员提供参考价值。

3 FAST-planner与EGO-planner
        3.1 两算法的特点

        前面已经介绍过FAST planner算法,FAST planner 强调快速响应和计算效率,在时间敏感的任务中表现出色。它利用高效的搜索算法来迅速生成路径,适合需要即时决策的应用场景。尽管FAST planner在速度上有优势,但在高度动态变化的环境中可能需要额外的调整以维持性能。

        相比之下,EGO planner 专长于处理动态环境中的局部避障问题,通过结合全局路径规划与局部轨迹优化,能够在复杂场景下保持高效的安全性和路径质量。其自适应机制使得EGO planner能够灵活应对各种障碍物分布情况,增强了系统的鲁棒性。

        3.2 两算法的对比

         EGO planner是一种基于梯度的局部规划器,与FAST planner相比,最大的不同是它不依赖于ESDF,从而显著减少了计算时间。

        ESDF(欧几里得符号距离场)是一种栅格地图,其中每个格子存储着该格子到最近障碍物的距离。从下图右下角的柱状图可以看出,EWOK 和 Fast-Planner 算法都需要较长的时间来构建这个 ESDF 地图。相比之下,Ego Planner 算法则不需要构建 ESDF,从而显著缩短了规划时间。

         同时,在生成地图的过程中,系统仅能识别障碍物的表面,而无法感知到障碍物背后的区域或其内部结构,正如示例图所示。这意味着,在利用ESDF进行路径规划优化时,算法倾向于产生一条远离障碍物边缘的安全路径。然而,在某些情况下,比如当上方有障碍物将轨迹向下挤压,同时下方又有障碍物向上推挤时,可能会导致规划出的路径陷入障碍物之间,从而造成路径“卡住”的现象。因此,ESDF不仅面临构建耗时的问题,还存在着对于复杂避障场景处理不够灵活的局限性。

        对两个算法进行比较可以得到下表:

4 EGO-plaanner框架 
        4.1 如何取代ESDF

        EGO Planner不使用环境距离场

### Ego_PlannerRviz在自动驾驶规划中的应用 Ego_planner通常指的是负责车辆自主决策和路径规划的核心模块,在`config/planning/scenario_planning/lane_driving/behavior_planning/behavior_path_planner`路径下的配置文件可能包含了行为级路径规划的具体参数设置[^1]。 #### Rviz作为可视化工具的作用 Rviz是一个强大的三维环境可视化工具,广泛应用于机器人操作系统(ROS)中用于展示传感器数据、轨迹预测以及车辆状态等信息。对于自动驾驶项目而言,通过集成rviz可以实现对ego_vehicle行驶过程的有效监控和调试[^2]。 #### 配置使用指南 为了更好地理解和操作这些组件: - **安装依赖库**:确保已经正确安装了所有必要的软件包,特别是针对特定版本的ros-noetic或者foxy等发行版。 - **加载场景描述文件**:利用launch文件启动整个仿真平台,并指定相应的world file来定义测试环境特性。 - **调整显示选项**:进入rviz界面之后,可以通过添加不同类型的display type(比如激光雷达点云、相机图像流或是自定义marker)来自由组合所需视图效果;同时支持多种坐标系变换以便于理解复杂的空间关系。 ```bash roslaunch behavior_path_planner planning_visualization.launch ``` 上述命令会调用预设好的launch脚本开启一系列节点服务并初始化图形化窗口[^3]。 #### 实践案例分析 实际开发过程中往往还需要结合具体的应用场景来进行针对性优化,例如城市道路工况下的动态避障策略设计或者是高速公路环境中多车道变道逻辑实现等问题都需要深入探讨。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值