从Carsim中获取轮胎侧偏刚度

参考博主carsim如何获得轮胎侧偏刚度_SSW.hani的博客-CSDN博客_轮胎侧偏刚度计算公式

以B级车为例:

      魔术公式轮胎模型:

 1、打开B级车的轮胎界面。

 2、打开EXCEL表格。

 3、第一行数据为垂直载荷,寻找与参考垂直载荷相近的一列数据,将其(除开第一行数据)保存于新建的EXCEL表格中,同时将第一列数据也进行保存,并命名为“R15”。

 

4、打开matlab,导入数据。

 

 5、在matlab命令行窗口输入如下代码:(获取数据)

x=R15(:,1);

y=R15(:,2);

 6、打开曲线拟合工具。

7、输入公式:d*sin(c*atan(b*x-e*(b*x-atan(b*x)))) 

8、设置参数,使拟合曲线逼近。 

 

9、可见,曲线拟合效果不错,记录数据。B=0.1169;C=2.161;D=5233。 

10、计算侧偏刚度。

kf=kr=BCD=0.1169*2.161*5233=1322N/°=75783N/rad。

 

### 如何通过魔术轮胎公式计算实车数据中的轮胎刚度 #### 魔术公式的背景与定义 魔术公式是一种广泛应用于汽车轮胎建模的数学表达式,用于描述轮胎力和滑移之间的关系。其一般形式为: ```plaintext Fy = D * sin(C * atan(B * α - E * (B * α - atan(B * α)))) ``` 其中: - \( F_y \) 是轮胎产生的向力; - \( \alpha \) 表示轮胎角; - 参数 B、C 和 D 分别表示形状因子、峰值系数以及摩擦极限。 在某些实现中,`atan` 函数可能被写作 `tan^-1` 或者其他变体,但实际上它们都指代反正切函数[^1]。 #### tan^-1 与 arctan 的区别 实际上,“\( \text{tan}^{-1} \)” 和 “arctan” 并无本质差异,在不同的文献或者软件环境中可能会采用不同书写方式来表示同一概念——即反三角正切运算。这种写法上的不一致并不会影响最终的结果只要保持一致性即可[^2]。 #### 关于为何 BCD 可作为刚度近似值 当考虑小角度范围内的线性化处理时,可以认为初始阶段随着角增加而增大的趋势接近直线特性。因此在这个区域内可以用斜率代替实际曲线特征从而简化分析过程。具体来说,在上述魔术方程里如果忽略高阶项并假设特定条件下成立,则有: \[ k_f ≈ B \cdot C \cdot D \] 这表明三者的乘积能够很好地反映轮胎刚开始发生变形时每单位倾所对应的力量变化量也就是所谓的“刚度”。 #### 利用 Carsim 获取真实车辆条件下的数值实例说明 对于一辆典型的中级轿车而言,按照之前提到的方法步骤操作之后得出结论如下所示: 1. **准备环境**: 使用Carsim建立目标车型模型,并调整至所需配置状态。 2. **提取基础资料**: 导出有关选定规格轮胎的各项物理属性及其响应行为的数据集。 3. **执行数据分析程序**: - 将采集到的信息导入MATLAB平台做进一步加工整理工作。 - 应用内置功能完成初步筛选过滤任务以便后续精确匹配需求。 4. **构建回归预测体系**: - 基于已知样本点绘制散点分布图象辅助观察规律特点。 - 输入拟定好的经验型解析表达式尝试拟合现有观测序列直至满意为止。 5. **确认关键指标**: - 查看所得最佳拟合参数组合情况(此处重点关注的是B,C,D三个核心要素)。 6. **推导结果评估**: - 结合理论依据换算成国际标准计量单位制下表述形式便于比较交流用途。 例如某次实验结果显示相关联参量分别为:B=0.1169; C=2.161 ;D=5233 。那么据此可得相应估算值得约为 : \[ K_{f}=K_{r}=B*C*D=0.1169*2.161*5233≈1322 N/\degree\approx75783N/radian \][^4]. 值得注意的是由于实际情况复杂多变所以单依靠单一测量手段往往难以全面捕捉所有潜在因素的影响效应故建议综合运用多种技术途径相互印证提高可信程度. --- ###
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值