微分方程——药物在体内分布的房室模型

背景

 1937年,药物动力学的创始人Torsten Teorell创建了三房室模型。

药物进入机体后,再随血液运输到各个器官和组织过程中,不断被吸收、分解、代谢,最终排出体外。药物在血液中的浓度,即单位体积血液(ml)中药物含量(毫克mg或微克mcg),称为血药浓度,随时间和空间(机体各个部分)而变化。血药浓度的大小直接影响到药物的疗效,浓度太低不能达到预期效果,浓度太高可能导致药物中毒、副作用太强或造成浪费。

新药研制、剂量确定、给药方案的设计等都需要药理学和临床医学以及数学的定量研究,产生了药物动力学这门新的学科。

房室模型(Compartment Model)是将机体分为血液较为丰富的中心室(心、肝、肺、肾等)和血液较为贫乏的周边室(四肢、肌肉组织等),药物的动态过程在每个房室内是一致的,转移只是在两个房室及某个房室与体外之间进行。

下面只考虑房室之间、房室与体外转移速率为常数的二房室模型(乳突状模型),如图13所示。 

                                    图13 二房室模型

【模型假设】

  1. 机体分为中心室和周边室,两个房室的容积(即血液体积要药物分布容积)在过程中不变
  2. 药物从一室向另一室转移速率,及向体外的排出速率与该房室的血药浓度成正比
  3. 只在中心室与体外有药物交换,即药物从体外进入中心室,由中心室渗透入周边室,再从周边室回到中心室,最后又从中心室排出体外
  4. 与转移和排出相比,药物被吸收的量可以被忽略

【符号说明】

                                图14 详细的二房室模型

【建立模型】

根据假设和图14所反映的关系,有如下模型【4.1】

又根据血药浓度、房室容积、药物剂量的关系,有

【4.2】

将【4.2】代入【4.1】,有

【4.3】

【模型求解】

模型【4.3】是线性常系数非齐次微分方程,其解由对应齐次的通解加上这个方程的特解,要求特解,就要知道f0(t)的表达式,下面分几种情况来讨论。

1、快速静脉注射

这种注射可以简化为在t=0瞬时将剂量D0的药物注射输入心脏,血液浓度立即上升为D0/V1,于是初始条件变为【4.4】

方程组【4.3】在【4.4】条件下的特解为【4.5】

2、恒速静脉滴注

当静脉滴注速率为k0时,f0(t)和初始条件为【4.6】

 【4.3】在【4.6】条件下得到的特解为【4.7】

其中A1和B1可以由c1(0)=0,c2(0)=0,B2,A2共同确定。

3、口服或肌肉注射

这种给药方式相当于在药物进入中心室以前,先有个将药物吸收入血液的过程,可以简化为一个吸收室,如图15所示,x0(t)是吸收室的药量,药物由吸收室进入中心室的速率为k01。

                                                 图15 详细的三房室模型

吸收室药量满足【4.8】

将【4.8】代入得到【4.9】

在【4.9】条件下,【3】的解为【4.10】

(设k01≠α,β),其中系数A,B,E由初值条件c1(0)=0,c2(0)=0确定。

 从【4.5】,【4.7】,【4.10】可以看出,中心室的血药的浓度c1(t)取决于转移速率k12,k21,k13,V1,V2,D0,k0等因素。而房室模型的用途恰好是通过对c1(t)的测量,确定对药理学和临床医学最重要的参数。

【参数估计】

 在t=0时刻瞬时快速注射剂量D0的药物后,在一系列时刻t1,t2,…,tn,从中心室测得药物浓度c1(ti),i=1,…,n然后进行参数估计(最小二乘法估计)。

Python数据挖掘学习笔记主要包括以下几个方面的内容:Python基础知识、Python爬虫技术、Python数据分析与数据挖掘。其中,Python基础知识部分介绍了Python编程语言的基本语法、数据类型、流程控制等内容,为数据挖掘的学习打下了基础。Python爬虫技术部分介绍了如何使用Python编写爬虫程序,从网页中获取所需数据。Python数据分析与数据挖掘部分则介绍了使用Python进行数据分析和数据挖掘的相关技术和工具。 在Python数据挖掘中,还涉及到一些扩展库的使用,可以使用pip或apt-get进行安装,例如numpy库可以使用命令"sudo pip install numpy"或"sudo apt-get install python-numpy"进行安装。 另外,Matplotlib是Python中最常用的绘图库之一,主要用于绘制二维图形,也可以绘制简单的三维图形。下面是一个使用Matplotlib进行简单绘图的示例代码: ```python import numpy as np import matplotlib.pyplot as plt x = np.linspace(0, 10, 1000) y = np.sin(x) z = np.cos(x ** 2) plt.figure(figsize=(8, 4)) plt.plot(x, y, label='$\sin x$', color='red', linewidth=2) plt.plot(x, z, 'b--', label='$\cos x^2$') plt.xlabel('Time(s)') plt.ylabel('Volt') plt.title('A Simple Example') plt.ylim(0, 2.2) plt.legend() plt.show() ``` 这段代码使用了numpy库生成了一组x轴的数据,然后分别计算了对应的y轴和z轴的数值。接下来使用Matplotlib进行绘图,其中plt.plot函数用于绘制曲线,plt.xlabel和plt.ylabel分别设置x轴和y轴的标签,plt.title设置图的标题,plt.ylim设置y轴的范围,plt.legend用于显示图例,plt.show用于显示图形。 通过学习这些内容,你可以掌握Python数据挖掘的基本知识和常用技术,为进一步的学习和实践打下坚实的基础。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [python数据挖掘学习笔记](https://blog.csdn.net/yinghuoai/article/details/88392141)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [python数据挖掘笔记](https://blog.csdn.net/djm82755/article/details/101452842)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七七喝椰奶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值