视频下载链接:https://pan.quark.cn/s/b44bb9bc7df2
在自动驾驶汽车识别道路环境、AR眼镜重构虚拟空间、文物古迹数字化保护的背后,都离不开一个关键核心技术——三维重建。本套课程通过系统化的知识体系与丰富的实战案例,带您深入计算机视觉的核心领域,掌握从单张图像解析到完整三维模型构建的全链路技术。(关键词:三维重建技术 计算机视觉教程 SIFT特征提取 捆绑调整优化 点云重建)
一、课程全景图:六维知识体系构建三维重建核心能力
知识图谱覆盖三大技术层级:
-
视觉感知层:相机模型/特征描述/几何约束
-
运动解析层:位姿估计/三角测量/BA优化
-
三维重构层:稠密重建/表面生成/模型渲染
技术演进路径清晰呈现:
2D特征(SIFT)→3D点云(PMVS)→表面模型(隐函数)→纹理渲染
二、核心模块深度解读:从理论到代码的完整闭环
📌 模块1:视觉感知基石(第1章)
-
针孔相机成像原理:理解焦距/主点/畸变参数
-
SIFT特征工程:128维描述子构建/DoG极值检测
-
对极几何解密:本质矩阵分解/8点法求解
🎯 模块2:运动恢复精髓(第2-3章)
-
三角量测技术:DLT线性解法/最小二乘优化
-
PnP问题突破:Kneip闭式解 vs EPnP鲁棒解法
-
BA优化核心:Ceres库实现/雅可比矩阵推导
💻 模块3:三维重建实战(第4-6章)
-
稠密重建双路径:
-
体素法:空间划分/TSDF融合
-
深度图法:PatchMatch优化
-
-
表面重建新范式:
-
泊松重建:隐函数场构建
-
纹理映射:UV展开/接缝优化
-
三、课程特色:工业级项目驱动学习
5大实战亮点:
-
MVS代码解析:OpenMVS框架深度定制
-
PMVS算法实现:面片扩散策略优化
-
MeshLab应用:点云滤波/网格简化
-
渲染管线搭建:PBR材质/光照烘焙
-
工业级评测:Hausdorff距离/召回率评估
典型工程案例:
-
文物碎片数字化:多视图配准与纹理保持
-
室内场景重建:动态物体剔除策略
-
无人机航拍重建:大规模点云优化
四、适合人群精准定位
✓ 计算机视觉方向研究生
✓ SLAM算法工程师
✓ 三维数字化项目开发者
✓ 游戏/影视建模专业人员
✓ AR/VR应用研发工程师
五、为什么选择本课程?
-
知识体系完整性:覆盖传统方法到深度学习重建
-
工业实践导向:提供可复用的C++/Python代码库
-
前沿技术解读:神经辐射场(NeRF)技术前瞻
-
持续更新机制:配套开源数据集与最新论文解读
课程配套资源:
-
3D扫描数据集(含Kinect/激光雷达数据)
-
Colab在线实验环境
-
工业级三维重建Pipeline设计文档
立即开启三维重建之旅:无论您是希望突破科研瓶颈,还是亟需提升工程能力,这套融合经典理论与现代实践的三维重建课程,都将成为您打开三维视觉世界的金钥匙。点击下方链接,获取从单目图像到数字孪生的完整技术栈!(关键词:三维重建培训 计算机视觉课程 SIFT算法教学 BA优化实战 点云处理教程)