YOLOv8『小目标』检测指南

YOLOv8『小目标』检测指南

原文:YOLOv8『小目标』检测指南 - 知乎 (zhihu.com)

前言

目前博主课题组在进行物体部件的异常检测项目,项目中需要先使用 YOLOv8 进行目标检测,然后进行图像切割,最后采用 WinCLIP 模型 进行部件异常检测

但是在实际操作过程中出现问题, YOLOv8 模型目标检测在大目标精确度不错,但是在小目标检测中效果极差

我们之前的解决方案是扩大异常部件的目标检测范围,易于检测。但是缺点是会增大异常检测的识别难度,需要对异常检测模型进行处理,暂时放弃

因此我们着重将目标放在如何修改 YOLOv8 ,使其具有处理小目标的能力,这是本文的重点内容

博主刚刚接触这方面的知识,如有缺漏还望各位指出

这里列出 YOLO discard 官网,如果有问题可以直接在里面提问:

### 关于YOLOv8的p2.yaml配置文件 目前官方并未提供名为`p2.yaml`的具体配置文件,但可以根据已有的YOLOv8架构设计原则以及常见的模型配置文件模板来推测其可能的内容。以下是基于现有资料[^1]和通用配置逻辑构建的一个示例。 #### 示例 `p2.yaml` 配置文件 以下是一个假设性的`p2.yaml`配置文件内容: ```yaml # YOLOv8 P2 Model Configuration File (Hypothetical Example) nc: 80 # Number of classes depth_multiple: 0.33 # Model depth multiple width_multiple: 0.50 # Model width multiple backbone: # [from, number, module, args] [[-1, 1, Conv, [64, 3, 2]], # Focus layer with input channels=3 and output channels=64 [-1, 1, BottleneckCSP, [64]], [-1, 3, BottleneckCSP, [128]], [-1, 9, BottleneckCSP, [256]], [-1, 3, SPPF, [256]]] head: [[-1, 1, Conv, [128, 1, 1]], [-1, 1, Upsample, [None, 2, 'nearest']], [[-1, 4], 1, Concat, [1]], [-1, 3, BottleneckCSP, [128, False]], [-1, 1, Conv, [128, 3, 2]], [[-1, 7], 1, Concat, [1]], [-1, 3, BottleneckCSP, [256, False]], [-1, 1, Detect, [nc, anchors]]] ``` 此配置文件定义了一个简化版的YOLOv8模型结构,其中包含了骨干网络(Backbone)和检测头(Head)。具体解释如下: - **`nc`:** 表示类别数量,在标准COCO数据集上通常设为80。 - **`depth_multiple` 和 `width_multiple`:** 控制模型深度和宽度的比例因子,用于调整模型大小以适应不同硬件需求。 - **`backbone`:** 定义了主干网络层,包括卷积层、Bottleneck CSP模块以及SPPF模块等。 - **`head`:** 描述了检测头部的设计,涉及上采样、拼接操作以及最终的Detect层。 需要注意的是,上述配置仅为一种可能性,并未经过实际验证。如果需要更精确的实现方案,则建议参考官方文档或社区资源获取最新版本的支持材料。 #### 如何下载或生成类似的配置文件? 对于特定名称如`p2.yaml`这样的自定义配置文件,可以尝试通过以下方式获得: 1. 访问 Ultralytics 的 GitHub 页面或其他开源项目仓库查找是否有现成的预定义配置; 2. 使用 Python 脚本动态创建所需格式的新 YAML 文件; 3. 修改现有的默认配置文件(例如`yolov8n.yaml`, `yolov8s.yaml`),按照个人需求调整参数设置。 ```python import yaml config_data = { "nc": 80, "depth_multiple": 0.33, "width_multiple": 0.50, "backbone": [ [-1, 1, "Conv", [64, 3, 2]], [-1, 1, "BottleneckCSP", [64]], [-1, 3, "BottleneckCSP", [128]], [-1, 9, "BottleneckCSP", [256]], [-1, 3, "SPPF", [256]] ], "head": [ [-1, 1, "Conv", [128, 1, 1]], [-1, 1, "Upsample", [None, 2, "nearest"]], [[-1, 4], 1, "Concat", [1]], [-1, 3, "BottleneckCSP", [128, False]], [-1, 1, "Conv", [128, 3, 2]], [[-1, 7], 1, "Concat", [1]], [-1, 3, "BottleneckCSP", [256, False]], [-1, 1, "Detect", ["nc", []]] ] } with open('p2.yaml', 'w') as file: yaml.dump(config_data, file) ``` 以上脚本能够帮助快速生成所需的`.yaml`文件并保存到本地目录下。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值