【YOLOv7/v5系列算法改进NO.45】首发最新特征融合技术RepGFPN(DAMO-YOLO)

YOLOv7改进:RepGFPN特征融合技术在DAMO-YOLO中的应用
本文介绍了将GFPN(Generalized Feature Pyramid Network)引入YOLOv7,以解决FPN在目标检测中的信息融合问题。GFPN通过跨层连接提供更有效的信息传输,提高模型性能。然而,其增加的计算成本和推理时延限制了其优势。作者在DAMO-YOLO中实施GFPN,实现了性能提升,同时分析了延迟增高的原因,并预告了后续的改进方法。


前言

作为当前先进的深度学习目标检测算法YOLOv7,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv7的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv7,YOLOv5算法2020年至今已经涌现出大量改进论文,这个不论对于搞科研的同学或者已经工作的朋友来说,研究的价值和新颖度都不太够了,为与时俱进,以后改进算法以YOLOv7为基础,此前YOLOv5改进方法在YOLOv7同样适用,所以继续YOLOv5系列改进的序号。另外改进方法在YOLOv5等其他算法同样可以适用进行改进。希望能够对大家有帮助。
YOLOv5添加完整项目百度网盘:
链接:https://pan.baidu.com/s/1soO9vzMyNyAB_xs9NM8DFw
提取码:关注私信后获取

具体改进办法请关注后私信留言!关注免费领取深度学习算法学习资料!


一、解决问题

FPN旨在与骨干网路输出的多分辨率特征进行信息聚合,它是目标检测非常重要且有效的部件。传统的FPN引入了一个top-down路径融合多尺度特

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能算法研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值