YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进【NO.73】添加渐近特征金字塔网络(AFPN模块)

本文介绍了渐近特征金字塔网络(AFPN)在YOLOv7目标检测算法中的应用,以解决多尺度特征融合的问题,提升检测效果。AFPN通过非相邻层级的直接交互和自适应空间融合操作,有效减少了深度并保持高性能。实验证明,AFPN在YOLO系列和其他检测框架中均能提升性能。
摘要由CSDN通过智能技术生成

 前言
作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大量改进论文,这个不论对于搞科研的同学或者已经工作的朋友来说,研究的价值和新颖度都不太够了,为与时俱进,以后改进算法以YOLOv7为基础,此前YOLOv5改进方法在YOLOv7同样适用,所以继续YOLOv5系列改进的序号。另外改进方法在YOLOv5等其他目标检测算法同样可以适用进行改进。希望能够对大家有帮助。

链接:https://pan.baidu.com/s/1fN07LssywnP_CFDZGPcK7A

提取码:关注后私信

一、解决问题

这篇文章提出的方法主要用并行子网络代替一层层叠加。这有助于有效减少深度同时保持高性能。尝试用提出的方法改进目标检测算法中,提升目标检测效果。

二、基本原理

原文链接:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能算法研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值