多输入多输出非线性对象的模型预测控制—Matlab实现

本示例展示了如何在 Simulink 中设计多输入多输出对象的闭环模型预测控制。该对象有三个操纵变量和两个测量输出。

一、非线性对象的线性化

运行该示例需要同时安装 Simulink 和 Simulink Control Design。

% 检查是否同时安装了 Simulink 和 Simulink Control Design
if ~mpcchecktoolboxinstalled('simulink')
    disp('运行此示例需要 Simulink(R)')
    return
end
if ~mpcchecktoolboxinstalled('slcontrol')
    disp('运行此示例需要Simulink Control Design(R)')
    return
end

1、打开非线性 Simulink 模型

open('mpc_nonlinmodel')

在这里插入图片描述
2、使用 Simulink 控制设计工具箱中的线性命令,在默认操作条件下(传递函数块的初始状态均为零)对对象进行线性化:

plant = linearize('mpc_nonlinmodel');

l i n e a r i z e \color{red}{linearize} linearize 函数的作用是对Simulink模型或子系统进行线性近似,以状态空间模型的形式返回。

3、输入输出变量名称分配

plant.InputName = {'Mass Flow';'Heat Flow';'Pressure'};
plant.OutputName = {'Temperature';'Level'};
plant.InputUnit = {'kg/s' 'J/s' 'Pa'};
plant.OutputUnit = {'K' 'm'};

注意:由于没有定义任何可测量或不可测量的干扰,也没有定义任何不可测量的输出,因此在根据该模型创建 MPC 控制器时,默认情况下所有的模型输入都被假定为可操作变量,所有的模型输出都被假定为可测量输出。

二、设计模型预测控制器

1、创建控制器对象,其采样周期、预测和控制范围分别为 0.2 秒、5 步和 2 次移动;

mpcobj = mpc(plant,0.2,5,2);

2、设置操作变量的约束

mpcobj.MV = struct('Min',{-3;-2;-2},'Max',{3;2;2},'RateMin',{-1000;-1000;-1000});

3、设置操作变量和输出信号的权重

mpcobj.Weights = struct('MV',[0 0 0],'MVRate',[.1 .1 .1],'OV',[1 1]);

4、查看 mpcobj 属性

mpcobj

==> 
MPC object (created on 30-May-2024 15:35:11):
---------------------------------------------
Sampling time:      0.2 (seconds)
Prediction Horizon: 5
Control Horizon:    2

Plant Model:        
                                      --------------
      3  manipulated variable(s)   -->|  5 states  |
                                      |            |-->  2 measured output(s)
      0  measured disturbance(s)   -->|  3 inputs  |
                                      |            |-->  0 unmeasured output(s)
      0  unmeasured disturbance(s) -->|  2 outputs |
                                      --------------
Disturbance and Noise Models:
        Output disturbance model: default (type "getoutdist(mpcobj)" for details)
         Measurement noise model: default (unity gain after scaling)

Weights:
        ManipulatedVariables: [0 0 0]
    ManipulatedVariablesRate: [0.1000 0.1000 0.1000]
             OutputVariables: [1 1]
                         ECR: 100000

State Estimation:  Default Kalman Filter (type "getEstimator(mpcobj)" for details)

Constraints:
 -3 <= Mass Flow (kg/s) <= 3, -1000 <= Mass Flow/rate (kg/s) <= Inf, Temperature (K) is unconstrained
  -2 <= Heat Flow (J/s) <= 2,  -1000 <= Heat Flow/rate (J/s) <= Inf,       Level (m) is unconstrained
    -2 <= Pressure (Pa) <= 2,    -1000 <= Pressure/rate (Pa) <= Inf                                  

三、使用 Simulink 进行闭环仿真

1、打开闭环仿真模型

mdl1 = 'mpc_nonlinear';
open_system(mdl1)

在这里插入图片描述
2、闭环仿真

sim(mdl1)

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

3、运行结果如下图所示:
Input:
在这里插入图片描述
Output:
在这里插入图片描述
尽管存在非线性,但几秒钟后,两个输出都能很好地跟踪其参考值,同时,正如预期的那样,被操纵的变量保持在预设的硬约束内。

四、修改MPC设计跟踪斜坡信号

为了既能跟踪斜坡,又能补偿非线性,可将两个输出端上的干扰模型定义为三重积分器(如果没有非线性,则使用双积分器即可)。

1、通过 tf 函数构造一个外部扰动模型outdistmodel:
2、通过 setoutdist 函数将上面构造的不可观测外部扰动传递函数 outdistmodel 添加到 MPC 的 model 中:

outdistmodel = tf({1 0; 0 1}, {[1 0 0 0], 1; 1, [1 0 0 0]});
setoutdist(mpcobj,'model',outdistmodel);

3、打开Simulink中的闭环仿真模型 mpc_nonlinear_setoutdist,它与上面的 mpc_nonlinear 闭环 Simulink 仿真模型相同,唯一不同的是参考信号,其参考信号的第一个由阶跃变为3秒以内以0.2斜率上升的斜坡信号。
在这里插入图片描述
4、闭环仿真12s

sim(mdl2, 12)

5、仿真结果如下图所示:
Input:
在这里插入图片描述
Output:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值