持续学习+多模态简直是发论文神器!最新10种创新思路汇总

持续学习最近真的火爆了!强化学习之父 Rich Sutton曾公开发表其对 AI 行业的看法:AI 研究需要重新关注“持续学习”能力,而不是仅仅追求在固定数据集上的性能。

持续学习能够帮助模型在不断变化的环境中持续学习新任务,同时保持对已有知识的记忆,具备更强的适应能力和鲁棒性。与多模态数据处理技术相结合,创新性很强且应用范围广,可以获得1+1>2的效果!

我整理了最新10种“多模态+持续学习”的创新思路,以下放出部分,全部论文PDF版+解析扫码工中号【沃的顶会】 回复 多模态持续 即可全部领取

Continual Learning for Multimodal Data Fusion of a Soft Gripper

文章提出了一种持续学习算法,能够在人工环境中增量地学习不同的数据模态,利用类增量和领域增量学习场景。该算法在标签数据稀缺但非独立同分布(non-iid)的未标签数据丰富的环境中表现出色,仅需存储每个类别的原型。实验在自定义多模态数据集和Core50数据集上进行,并通过实时物体分类实验展示了算法的鲁棒性。

图片

创新点

1.提出了一个在线非示例持续学习算法,结合了半监督学习能力,并引入了层内特征表示机制以增强预训练层的特征图。

2.构建了一个新的多模态非-iid数据集,适用于现实世界的持续学习应用。

3.展示了在不同模态作为新增量领域而非简单融合多模态数据的情况下学习的鲁棒性。

4.在自定义多模态数据集和Core50数据集上进行了评估,并进行了消融研究以验证算法各部分的有效性。

5.进行了实时物体分类实验,使用配备传感器的软气动夹爪和独立相机设置,并通过ROS框架同步。

Dynamic Transformer Architecture for Continual Learning of Multimodal Tasks

文章提出了一种基于Transformer的持续学习框架,专注于处理涉及视觉和语言的多模态任务(Vision-and-Language, VaL)。通过引入额外参数来扩展基础Transformer模型,该框架能够动态调整模型以适应不同任务,并利用知识蒸馏从过去的经验中学习,从而有效缓解灾难性遗忘问题。该方法在多个具有挑战性的多模态任务上取得了最先进的性能,同时保持了较低的内存和时间开销。

图片

创新点

1.提出了Task Attentive Multimodal Continual Learning (TAM-CL)框架,专门用于视觉和语言的多模态任务。

2.通过引入额外参数实现动态模型扩展,使模型能够高效地学习多个顺序任务。

3.利用知识蒸馏技术,从过去的任务中提取有用信息,帮助当前任务的学习。

4.解决了持续学习中的灾难性遗忘问题,同时保持了较低的资源开销。

全部论文PDF版+解析扫码工中号【沃的顶会】 回复 多模态持续 即可全部领取

Modality-Inconsistent Continual Learning of Multimodal Large Language Models

文章提出了一种新的持续学习场景——模态不一致持续学习(MICL),适用于多模态大语言模型(MLLMs)。与现有的视觉或模态增量设置不同,MICL结合了模态和任务类型的转变,这些变化会导致灾难性遗忘。为了解决这些问题,作者提出了MoInCL方法,通过伪目标生成模块(PTGM)和基于指令的知识蒸馏(IKD)来缓解遗忘问题。

实验结果表明,MoInCL在处理模态和任务类型变化方面显著优于现有方法。

图片

创新点

1.提出了一种新的持续学习场景——模态不一致持续学习(MICL),其中不同的模态和任务类型以增量方式引入。

2.引入了MoInCL方法,包含伪目标生成模块(PTGM)和基于指令的知识蒸馏(IKD),以应对任务类型变化和模态不一致带来的挑战。

3.首次在图像、音频和视频三种模态上结合描述和问答两种任务类型,进行了六个多模态增量任务的基准测试。

Recent Advances of Multimodal Continual Learning: A Comprehensive Survey

文章首次对多模态持续学习(MMCL)进行了全面综述。随着机器学习模型从单模态数据处理扩展到多模态数据,MMCL方法应运而生。文章介绍了MMCL的基本背景知识和设置,并提出了一个结构化的分类法,将现有的MMCL方法分为四类:基于正则化、基于架构、基于重放和基于提示的方法。此外,文章还总结了开放的MMCL数据集和基准,并讨论了未来研究的几个有前景的方向。

图片

创新点

1.首次对多模态持续学习进行了全面综述,填补了该领域的空白。

2.提出了一个结构化的分类法,系统地归纳了现有的MMCL方法。

3.总结了开放的MMCL数据集和基准,为后续研究提供了资源。

4.讨论了未来研究的多个有前景的方向,促进了该领域的发展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值