open3d 计算点云密度

一、计算点云密度(一)

import open3d as o3d
import numpy as np
if __name__ == '__main__':
    print("->正在加载点云... ")
    point_cloud = o3d.io.read_point_cloud("res/bunny.pcd")
    # 对于每个点,都计算了离他最近的点的距离,由此可以得知这堆点云的所有点之间的平均距离
    distances = point_cloud.compute_nearest_neighbor_distance()
    avg_dist = np.mean(distances)
    print("点云密度为=", avg_dist)

原理

计算了点云中每个点到其最近邻点的距离,并计算了这些距离的平均值。这样可以得到点云的平均密度或平均分布距离。

二、计算点云密度(二)

import open3d as o3d
import numpy as np

pcd = o3d.io.read_point_cloud("res/bunny.pcd")  # 读取点云数据
point = np.asarray(pcd.points)  # 获取点坐标
kdtree = o3d.geometry.KDTreeFlann(pcd)  # 建立KD树索引
point_size = point.shape[0]  # 获取点的个数
dd = np.zeros(point_size)
for i in range(point_size):
    [_, idx, dis] = kdtree.search_knn_vector_3d(point[i], 2)
    dd[i] = dis[1]  # 获取到最近邻点的距离平方
density = np.mean(np.sqrt(dd))  # 计算平均密度
print("点云密度为 denstity=", density)

原理

  1. 通过 o3d.geometry.KDTreeFlann(pcd) 命令建立了一个 KD 树索引,其中 pcd 是一个点云对象。
  2. 获取点云中点的数量,即 point_size = point.shape[0]
  3. 创建一个长度为 point_size 的零数组 dd,用于存储每个点到其最近邻点的距离平方。
  4. 遍历点云中的每个点,对于每个点,通过 kdtree.search_knn_vector_3d(point[i], 2) 命令搜索其最近的两个邻居点,返回了最近邻点的索引和距离。
  5. 将距离平方存储在 dd[i] 中,其中 dis[1] 表示第二个邻居点的距离,因为第一个邻居点是其自身,所以要取第二个邻居点的距离。

这样,数组 dd 中存储了每个点到其最近邻点的距离平方。

三、相关数据

百度网盘数据集:

包括 obj,pcd,las,png,ply等

百度网盘链接:https://pan.baidu.com/s/1JFxKUk_xMcEmpfBHtuC-Pg
提取码:cpev

### 使用 Open3D 增加点云密度 为了提高点云密度,可以采用多种方法。一种常见的做法是对原始点云执行下采样后再进行上采样操作来实现更均匀分布的高密度点云。具体来说,在Open3D中可以通过Voxel Grid滤波器先减少冗余点的数量,之后再利用各种插值手段恢复甚至超越原有的细节程度。 下面展示了一个具体的流程实例: #### 下采样降低噪声并保持特征结构 通过设置较小体素大小参数`voxel_size`来进行初步简化处理[^1]。 ```python import open3d as o3d def downsample_pointcloud(pcd, voxel_size): print(f":: Downsample with a voxel size of {voxel_size}.") pcd_down = pcd.voxel_down_sample(voxel_size=voxel_size) return pcd_down ``` #### 上采样增加点数以提升局部精细度 接着应用泊松表面重建算法或其他形式的空间填充机制完成最终目标——即增大整体密度[^2]。 ```python def upsample_pointcloud(pcd_down, depth=9): print(":: Poisson surface reconstruction.") mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson( pcd_down, depth=depth) # 可视化生成的结果 o3d.visualization.draw_geometries([mesh]) # 将网格转换回点云表示 pcd_up = mesh.sample_points_uniformly(number_of_points=len(pcd_down.points)*2) return pcd_up ``` 上述代码片段展示了如何借助Poisson Surface Reconstruction技术从稀疏输入创建出更加密集和平滑的新版本点集。需要注意的是,实际应用场景可能还需要考虑更多因素如边界条件、计算资源消耗等,并据此调整相应配置选项。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云杂项

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值