💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
多目标粒子群算法(Multi-Objective Particle Swarm Optimization, MOPSO)在微电网优化调度方面的研究是一个非常前沿和重要的课题。微电网系统一般包括风光能源、储能系统、柴油发电机组、燃气发电机组以及电网交互等多种能源资源和组件,因此需要有效的优化调度方法来实现系统运行的最佳性能。
在研究中,首先需要建立微电网的数学模型,包括各种能源组件的特性、约束条件、系统运行需求等。然后,利用多目标粒子群算法来解决微电网的多目标优化问题,如提高能源利用效率、降低运行成本、减少排放量等目标可能是其中的重点。
MOPSO算法是一种启发式优化算法,通过模拟粒子群的行为来搜索多个目标函数的最优解。在微电网优化调度中,可以将不同的目标函数转化为多个相互竞争的优化目标,如最小化运行成本、最大化可再生能源利用率等。MOPSO算法可以在不同目标之间寻找到一组均衡的解,称为 Pareto 最优解集合,从中选择最优的调度方案。
通过研究基于多目标粒子群算法的微电网优化调度,可以有效提高微网系统的运行效率、经济性和环保性,为实现微电网的可持续发展提供重要支持。需要注意的是,还需要考虑实际工程应用中的各种约束条件和风险因素,以确保优化调度方案的实用性和稳定性。
由于缺乏对联络线功率部分约束的完善,尽管功率平衡条件得以满足,但在修改代码时对新增约束部分仍感到困惑。这个问题的关键在于程序代码中未添加对联络线功率的约束条件,导致缺乏必要的支撑。可以类比于潮流计算中的平衡节点,就像需要一个"桥梁"来确保功率平衡一样,联络线功率通常充当了这个重要角色。为了解决这个问题,我们需要为联络线功率增设约束条件,以确保系统的平衡水平得以维持。
为了更好地理解多约束多目标智能算法优化机理,并且方便代码的修改,我计划创建一个"模板",具体内容将涵盖以下几点,以帮助大家更好地应对这个问题:
1. 首先,我打算利用"可行状态"标志,将爬坡约束、SOC约束、联络线功率约束等模板化,将它们集中在目标函数子程序(fitness)的设计中。通过按照相同的格式增加或修改约束条件,大家将能够轻松地完成对约束的处理。
2. 其次,我将对无需修改的子函数进行固化处理。考虑到程序可能涉及多个子函数,并且采用了结构变量形式,这导致了调试的困难性增加。为了应对这一问题,我计划对这些子程序进行完善且固定化的改进,这样大家只需要了解每个模块的功能即可,无需进行具体的修改操作。
通过这个模板的设计和应用,我希望能够协助大家更好地理解多约束多目标智能算法优化的机理,同时也提供了方便修改代码的工具,以便更加高效地解决类似问题。
📚2 运行结果
部分代码:
swarm_size=100; % 种群个数
rep_size=100; % 存档库大小
grid_size=7; % 每个维度的网格数
alpha=0.1; % 通货膨胀率
beta=2; % 领导人选择压力
gamma=2; % 删除选择压力
mu=0.1; % 变异速率
problem=@prob; % 创建函数句柄为problem,函数为pro,可以简单理解为调用
end
%% 初始化粒子
fprintf('初始化种群中\n')
w = @(it) ((max_iter - it) - (iw(1) - iw(2)))/max_iter + iw(2); %更新惯性因子--改进粒子群算法
pm = @(it) (1-(it-1)/(max_iter-1))^(1/mu); %类比遗传算法引入变异操作,更新变异速率,在particle函数的78-84行
swarm(1,swarm_size) = Particle(); %调用Particle函数,从obj中得到swarm_size
for i = 1:swarm_size
swarm(i)=Particle(lower_bound,upper_bound,problem);%调用Particle函数
retry = 0;
while swarm(i).infeasablity > 0 && retry < 100 %循环条件为:无不可行解且次数低于100
swarm(i)=Particle(lower_bound,upper_bound,problem);%调用Particle函数
retry = retry + 1;
end
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]李兴莘,张靖,何宇等.基于改进粒子群算法的微电网多目标优化调度[J].电力科学与工程,2021,37(03):1-7.