👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
摘要:该文提出多微电网并网系统租赁共享储能组成微电网联盟参与配电网调峰调度的优化调度策略,促进储能高效应用和新能源就地消纳,实现多主体利益共赢。以配电网为主体,以微电网联盟和共享储能运营商为从体,构建一主多从博弈优化模型。主体制定分时电价实施调峰调度,达到效益最大。从体响应分时电价,实施两阶段优化,第一阶段优化储能应用:各微电网优化储能充放电策略以平抑功率波动,使负荷均方差最小和储能成本最小,并按需租赁储能;共享储能优化充放电策略,满足多微电网净储能充放电需求,使其效益最大;第二阶段优化联盟用能:优先成员间新能源功率互济,响应调峰调度,使联盟效益最大,分配成员合作利益。算例结果验证了方法的有效性。
关键词:
在“双碳”目标引导下,分布式新能源发电可望得到更大规模发展。微电网是分布式新能源消纳的有效方式,微电网接入主动配电网 (active distribution network,ADN)将形成含有多个微电网的主动配电网系统,需要协调 ADN 与微电网之间的功率调度,促进新能源就地消纳,提升系统整体的供电可靠性与运行经济性[1-2]。微电网新能源发电的波动性是新能源消纳的主要障碍。当微电网优先消纳新能源支撑负荷时,剩余的净负荷也具有波动性。波动的净负荷则由微电网的可控机组发电进行调节补充。净负荷频繁地波动,将导致可控机组频繁地调节,其调节速度和调节量难以跟上净负荷变化,从而引发微电网的频率质量、电压质量等问题。当微电网并网时,这一功率波动也会对电网造成冲击。储能是平抑微电网新能源波动的重要手段[3-4]。对于并网型微电网,可利用储能的快速充放电特性平抑其新能源发电的功率波动,减少微电网可控机组的功率调节频度,以及对配电网的冲击频度,促进新能源就地消纳能力,实现微电网友好并网。当前,微电网中以分布式储能应用为主,多微电网接入同一配电网时,整体视角下多个微电网储能充放电行为具有无序性,导致储能资源浪费。同 时,整体视角下多个微电网能量产消特性各异,会导致微电网间功率交互的无序性,造成能源资源浪费。可以看出,多微电网并网系统具有 2 个互补性:
1)多微电网储能应用的充放电行为各异且具有互 补性;
2)多微电网的能量产销特性各异且具有互补性。利用这两个特点,可寻求多微电网储能和新能源资源高效应用的有效途径;同时也为多微电网友好并网,助力 ADN 调峰调度提供新方案。
一、多微电网系统结构与技术特征
1. 多微电网基本架构
多微电网(Multi-Microgrid, MMG)是由多个独立微电网通过公共耦合点(PCC)互联形成的网络系统,其核心组件包括:
- 能源设备:风力发电机(WT)、光伏(PV)、燃气轮机(MT)、储能系统(ESS)等;
- 控制层级:通常采用分层控制架构,包含系统级(中央调度中心)、微电网级(MGO)和单元级(分布式发电与储能设备);
- 运行模式:支持孤岛模式(独立运行)与并网模式(与上级电网交互),通过能量流和信息流实现协同调度。
2. 技术优势
- 提升可再生能源渗透率:通过多微电网互联消纳更多分布式能源;
- 灵活性与可靠性:微电网间功率互济可应对负荷波动与发电不确定性;
- 经济性优化:共享储能降低个体投资成本,联盟合作提升整体收益。
二、共享储能租赁模式与经济模型
1. 租赁模式分类
模式 | 特点 | 优缺点 |
---|---|---|
容量租赁 | 按固定容量付费,结算简单 | 优点:操作便捷;缺点:忽略实际充放电差异 |
充放电需求租赁 | 按实际充放电行为计费,透明度高 | 优点:个性化计费;缺点:难以量化机会成本 |
两部制电价 | 结合容量电价与电量电价,兼顾公平性与经济性 | 优点:平衡运行成本与机会成本;缺点:需复杂计量系统支持 |
2. 经济收益模型
- 容量租赁收益:国内指导价为250-350元/kW/年,100MW电站年收益达2500-3500万元;
- 辅助服务收益:调峰调频、黑启动等服务提升综合收益;
- 机会成本补偿:两部制电价中容量电价补偿储能因租赁放弃的其他市场套利机会。
三、配电网博弈优化调度关键方法
1. 博弈框架与主体目标
- 主从博弈结构:配电网(ADN)为领导者,制定分时电价;微电网联盟(MGCO)与共享储能(SESO)为跟随者,优化充放电策略;
- 目标函数:
- ADN:最小化网损,平衡峰谷负荷;
- MGCO:最大化本地新能源消纳,降低运行成本;
- SESO:通过租赁服务与调峰套利实现收益最大化。
2. 两阶段优化策略
- 第一阶段(储能应用优化):
- 微电网优化ESS充放电以平抑净负荷波动;
- SESO汇总多微电网需求,制定共享储能充放电计划。
- 第二阶段(联盟用能优化):
- 微电网间功率互济,余电优先互补;
- 响应ADN调峰需求,通过可控机组调节剩余功率。
3. 数学建模方法
- Stackelberg博弈:ADN作为领导者优先决策,MGCO与SESO动态调整策略;
- 纳什均衡:在合作博弈中,通过Shapley值分配联盟收益;
- 鲁棒优化:考虑新能源出力与负荷不确定性,采用CCG算法求解。
四、多微电网协同调度机制
1. 分层协同架构
- 系统级:中央调度中心协调全局能源分配;
- 微电网级:MGO通过能量管理系统(MEMS)优化本地发电与储能;
- 单元级:DG与ESS响应调度指令,实现实时功率平衡。
2. 协同策略
- 分布式控制:基于共识算法动态调整微电网出力;
- 需求响应:用户侧竞价参与调峰,提升灵活性;
- 碳交易机制:通过碳排放权交易促进清洁能源消纳。
五、应用案例与经济效益
1. 案例:冷热电多微网系统
- 储能配置:共享储能电站容量降低87.41%,投资回收期4.86年(远低于寿命周期8年);
- 经济效果:年运行成本降低17.23%,可再生能源消纳率达100%。
2. 通用效益分析
- 用户侧:节省自建储能投资,降低电费支出;
- 运营商侧:共享储能年收益可达314万元;
- 配电网侧:减少峰谷差,提升供电可靠性。
六、现有调度策略对比
策略类型 | 核心方法 | 优势 | 局限性 |
---|---|---|---|
主从博弈 | ADN主导电价,MGCO动态响应 | 利益均衡,适合多主体交互 | 需复杂迭代求解 |
合作博弈 | 微电网联盟收益按Shapley值分配 | 公平分配,提升整体收益 | 依赖完全信息共享 |
深度强化学习 | MADRL算法适应动态环境 | 处理大规模数据高效 | 需大量训练数据 |
混合博弈 | 结合主从博弈与纳什谈判 | 兼顾个体与联盟利益 | 模型复杂度高 |
七、未来研究方向
- 多时间尺度优化:结合日前调度与实时控制;
- 跨区域协同:扩展至跨配电网的共享储能交易;
- 人工智能融合:强化学习提升不确定场景适应性;
- 政策机制设计:完善容量租赁定价与碳交易规则。
通过上述分析可见,多微电网租赁共享储能的配电网博弈优化调度通过分层协同、动态博弈与两阶段优化,实现了新能源高效消纳与多主体利益共赢,是未来智能电网发展的关键技术方向。
📚2 运行结果
2.1 原文运行结果1
2.1 复现结果图1
2.2 原文结果图2
2.2 复现结果图2
以上仅展现部分结果图。
🎉3 文献来源
部分理论来源于网络,如有侵权请联系删除。
[1]李咸善,方子健,李飞等.含多微电网租赁共享储能的配电网博弈优化调度[J].中国电机工程学报,2022,42(18):6611-6625.DOI:10.13334/j.0258-8013.pcsee.211424.