Homography单应性矩阵

Homography是一种描述同一平面上不同图像间点对应关系的3x3变换矩阵,常用于图像处理中的平移、翻转、缩放和旋转等操作。它能将一张图像上的点映射到另一张图像上对应点,但不适用于不在同一平面上的点。例如,对于书皮这样的平面对象,可以使用单应性变换实现对齐,而像桌面、地面等多平面场景则需分别处理。水平翻转的单应性矩阵为`[[-1,0,w],[0,1,0],[0,0,1]]`,将导致x坐标反转。
摘要由CSDN通过智能技术生成

1. Homography 单应性概念
考虑 同一个平面(比如书皮)的两张图片,红点表示同一个物理坐标点在两张图片上的各自位置。在 CV 术语中,我们称之为对应点。

Homography 就是将一张图像上的点映射到另一张图像上对应点的3x3变换矩阵.
因为 Homography 是一个 3x3 的 矩阵,所以我们可以把它写成:


对于图中的一对儿对应点,位于图一的 (x1, y1) 和 位于图二的 (x2, y2). H 把二者映射关系建立起来:

对于所有的对应点,只要它们都位于同一个物理平面上,上述 Homography 就是成立的。换句话说,就是可以把图一中书皮上的所有点都映射到图二的书皮上,也就是看起来,图一中的书皮和图二中的书皮对齐了!
那么对于不在此平面上的点呢?这时再应用 Homography 就无法再对齐到对应点了。比如 上图中的 桌面,地面,橱柜面。对于这种图像中有多个平面的情况,我们就需要针对每一个平面使用其对应的Homography了。
在这里插入图片描述

2.计算

 单应性(homography)变换用来描述物体在两个平面之间的转换关系,可以用于描述平移、翻转、缩放、旋转、仿射变换等。其是对应齐次坐标下的线性变换,可以通过矩阵表示:

其中,H为单应性变换矩阵,假设变换前坐标为(x,y),变换后坐标为(x',y'),上式表达为: 

 

 下面以翻转为例简单介绍其变换矩阵。假设图像的高和宽分别是h, w,那么:水平翻转变换的单应性矩阵是:

[[-1, 0, w], 
[0, 1, 0], 
[0, 0, 1]]
将矩阵带入变换公式,可以得到实际的变换为:x' = w-x, y' = y。
参考:https://blog.csdn.net/wxyjhv/article/details/110522841

 平面坐标变换(单应性变换/Homography变换)_there2belief的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值