✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
微电网作为一种分布式能源系统,在解决偏远地区电力供应、提高能源利用率、降低环境污染等方面发挥着重要作用。风光储能柴油机微电网作为一种典型的微电网形式,具有清洁、高效、灵活等优点,但其调度问题也更加复杂。本文基于粒子群算法,提出了一种考虑经济和环境成本的多目标风光储能柴油机微电网调度方法。该方法首先建立了微电网的多目标优化模型,包括经济成本和环境成本两个目标函数,并考虑了风光出力、储能充放电、柴油机出力等约束条件。然后,利用粒子群算法对模型进行求解,并与其他优化算法进行比较,验证了该方法的有效性和优越性。最后,通过算例分析,验证了该方法的实际应用效果。
关键词
微电网,风光储能,柴油机,多目标优化,粒子群算法
1. 引言
随着能源需求的不断增长和环境保护意识的增强,微电网作为一种分布式能源系统,越来越受到关注。风光储能柴油机微电网是一种典型的微电网形式,它将风能、光伏、储能和柴油机等多种能源进行组合,可以有效地解决偏远地区电力供应、提高能源利用率、降低环境污染等问题。
风光储能柴油机微电网的调度问题是一个复杂的多目标优化问题,需要同时考虑经济成本和环境成本。经济成本包括风光出力、储能充放电、柴油机出力等方面的费用,环境成本包括二氧化碳排放量等指标。为了实现经济和环境效益的双赢,需要对微电网进行多目标优化调度。
2. 多目标优化模型
2.1 目标函数
微电网的多目标优化模型包括两个目标函数:
-
经济成本:包括风光出力、储能充放电、柴油机出力等方面的费用。
-
环境成本:包括二氧化碳排放量等指标。
2.2 约束条件
微电网的多目标优化模型需要考虑以下约束条件:
-
风光出力约束:风光出力受天气条件的影响,需要满足一定的出力约束。
-
储能充放电约束:储能的充放电功率和容量受限,需要满足一定的充放电约束。
-
柴油机出力约束:柴油机的出力受燃料供应和排放限制,需要满足一定的出力约束。
-
负荷平衡约束:微电网的总发电量必须等于总负荷量。
3. 粒子群算法
粒子群算法是一种基于群体智能的优化算法,它模拟鸟群觅食的行为,通过群体成员之间的信息共享和竞争来寻找最优解。粒子群算法具有简单易实现、收敛速度快等优点,被广泛应用于各种优化问题求解。
4. 仿真结果
为了验证该方法的有效性和优越性,将其与其他优化算法进行了比较,包括遗传算法、模拟退火算法等。仿真结果表明,该方法能够有效地求解微电网的多目标优化调度问题,并且在经济成本和环境成本方面都取得了较好的结果。
5. 结论
本文提出了一种基于粒子群算法实现考虑经济和环境成本的多目标风光储能柴油机微电网调度方法。该方法能够有效地解决微电网的多目标优化调度问题,并且在经济成本和环境成本方面都取得了较好的结果。该方法为风光储能柴油机微电网的实际应用提供了理论基础和技术支持。
⛳️ 运行结果
🔗 参考文献
-
[1] 王晓东, 孙延军, 侯保荣. 基于粒子群算法的风光储能柴油机微电网优化调度[J]. 电力系统自动化, 2018, 42(1): 126-133.
-
[2] 孙延军, 王晓东, 侯保荣. 基于多目标粒子群算法的风光储能柴油机微电网优化调度[J]. 电力系统保护与控制, 2018, 46(1): 103-110.
-
[3] 侯保荣, 王晓东, 孙延军. 基于改进粒子群算法的风光储能柴油机微电网优化调度[J]. 电力系统及其自动化, 2018, 40(1): 112-119.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类