【滤波跟踪】基于扩展卡尔曼滤波EKF与无迹卡尔曼滤波UKF实现非线性状态、参数估计附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

在许多工程领域,例如目标跟踪、机器人导航和经济预测,我们经常需要估计系统的状态和参数。然而,由于噪声、非线性模型和不完全观测的存在,直接测量通常无法准确地反映系统状态和参数的真实值。滤波跟踪技术应运而生,它利用系统模型和测量数据,对系统状态和参数进行估计,并随着时间的推移不断更新估计值。

卡尔曼滤波 (Kalman Filtering) 是一种广泛应用于线性系统状态估计的递归算法。然而,当系统包含非线性模型时,传统的卡尔曼滤波不再适用。为了解决这个问题,人们提出了两种主要的非线性滤波算法:扩展卡尔曼滤波 (Extended Kalman Filter,EKF) 和无迹卡尔曼滤波 (Unscented Kalman Filter,UKF)。

一、 扩展卡尔曼滤波 (EKF)

EKF 是将卡尔曼滤波应用于非线性系统的扩展方法。其主要思想是将非线性模型线性化,然后应用线性卡尔曼滤波进行状态估计。具体步骤如下:

  1. 线性化: 通过泰勒级数展开将非线性系统模型线性化,近似得到系统的状态方程和测量方程。

  2. 卡尔曼滤波: 利用线性化的模型,应用标准的卡尔曼滤波算法估计状态向量。

EKF 的优点:

  • 实现相对简单,易于理解和应用。

EKF 的缺点:

  • 线性化操作会引入误差,尤其是当非线性程度较高时,误差会显著增大。

  • 要求系统模型可微分,并且需要计算雅可比矩阵,增加了计算量。

二、 无迹卡尔曼滤波 (UKF)

UKF 是一种基于无迹变换 (Unscented Transform,UT) 的非线性滤波算法。其核心思想是使用少量确定性的采样点 (Sigma points) 来近似表示状态变量的概率分布,并利用 UT 将这些采样点映射到非线性模型中,从而获得状态估计。

UKF 的优点:

  • 比 EKF 更准确,尤其是在高度非线性系统中。

  • 不需要计算雅可比矩阵,简化了计算过程。

UKF 的缺点:

  • 比 EKF 计算量更大。

  • 对于高维状态空间,需要选择合适的 Sigma points 数量,否则会影响算法精度。

三、 实例应用

1. 目标跟踪

假设有一个移动目标,我们想要通过传感器数据估计其位置和速度。目标的运动模型和传感器测量模型可能都是非线性的。

2. 机器人导航

在机器人导航中,我们经常需要估计机器人的姿态 (位置和方向) 和速度。机器人环境的模型通常是非线性的,并且存在传感器噪声。

四、 总结

EKF 和 UKF 都是处理非线性系统状态估计的有效方法。EKF 实现简单但精度较低,而 UKF 更加准确但计算量更大。选择哪种滤波方法取决于具体应用场景的需求和限制。

⛳️ 运行结果

🔗 参考文献

[1] 靳璐.机动目标跟踪及无迹滤波(UKF)的相关应用研究[D].中北大学[2024-05-25].DOI:10.7666/d.y1509409.

[2] 葛利平.多传感器网络数据融合技术的研究[D].南京邮电大学[2024-05-25].

[3] 刘翔,宋常建,胡磊,等.基于无迹卡尔曼滤波的单站混合定位跟踪算法[J].探测与控制学报, 2012, 34(3):5.DOI:CNKI:SUN:XDYX.0.2012-03-014.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 27
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
无迹卡尔曼滤波(Unscented Kalman Filter,UKF)是一种非线性滤波算法,用于估计系统状态。相比于传统的扩展卡尔曼滤波(Extended Kalman Filter,EKF),UKF使用迹变换来更准确地估计线性系统的。 以下是一个简单的无迹卡尔曼滤波代码示例: ```python import numpy as np def unscentedalman_filter(x, P, z, Q R, f, h): n = len) m = len(z) alpha = 0.001 kappa = 0 beta = 2 lambda_ = alpha**2 * (n + kappa) - n c = n + lambda_ Generate sigma points sigma_points = np.zeros((n, 2*n+1)) sigma_points[:, 0] = x sqrt_P = np.linalg.cholesky(c*P) for i in range(n): sigma_points[:, i+1] = x + sqrt_P[:, i] sigma_points[:, n+i+1] = x - sqrt_P[:, i] # Propagate sigma points through the nonlinear process model propagated_points = np.zeros((n, 2*n+1)) for i in range(2*n+1): propagated_points[:, i] = f(sigma_points[:, i]) # Calculate predicted state and covariance x_pred = np.sum(propagated_points, axis=1) / (2*n+1) P_pred = np.zeros((n, n)) for i in range(2*n+1): P_pred += ((propagated_points[:, i] - x_pred) @ (propagated_points[:, i] - x_pred).T) / (2*n+1) P_pred += Q # Calculate predicted measurement and covariance z_pred = np.zeros((m, 1)) for i in range(2*n+1): z_pred += h(propagated_points[:, i]) z_pred /= (2*n+1) Pzz = np.zeros((m, m)) Pxz = np.zeros((n, m)) for i in range(2*n+1): Pzz += ((h(propagated_points[:, i]) - z_pred) @ (h(propagated_points[:, i]) - z_pred).T) / (2*n+1) Pxz += ((propagated_points[:, i] - x_pred) @ (h(propagated_points[:, i]) - z_pred).T) / (2*n+1) Pzz += R # Calculate Kalman gain K = Pxz @ np.linalg.inv(Pzz) # Update state and covariance x = x_pred + K @ (z - z_pred) P = P_pred - K @ Pzz @ K.T return x, P ``` 在上述代码中,`x`是系统状态向量,`P`是状态协方差矩阵,`z`是测量向量,`Q`是过程噪声协方差矩阵,`R`是测量噪声协方差矩阵,`f`是非线性过程模型函数,`h`是非线性测量模型函数。函数`unscented_kalman_filter`实现无迹卡尔曼滤波的主要逻辑,通过传入相应的参数进行状态估计。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值