【状态估计】【卡尔曼滤波kalman】UKF、EKF、粒子滤波PF学习与研究附Matlab代码

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、卡尔曼滤波基本原理

1. 卡尔曼滤波核心思想

卡尔曼滤波是一种最优递归数据处理算法,适用于处理线性系统的状态估计问题。其核心思想是利用系统状态方程和观测方程,通过预测和更新两个步骤,递归地估计系统状态。它通过最小化估计误差的均方误差来获得最优估计。

2. 标准卡尔曼滤波公式

图片

    其中,x 是状态向量,z 是观测向量,F 是状态转移矩阵,H 是观测矩阵,B 是控制输入矩阵,u 是控制输入,Q 是过程噪声协方差,R 是观测噪声协方差,K 是卡尔曼增益。

    二、扩展卡尔曼滤波(EKF)

    1. EKF 的基本思想

    EKF 是卡尔曼滤波在非线性系统中的扩展。当系统的状态方程或观测方程是非线性函数时,EKF 通过泰勒展开将非线性函数在当前估计值附近线性化,然后应用标准卡尔曼滤波算法。

    2. EKF 的关键步骤

    图片

      3. EKF 的优缺点

      • 优点

        :实现相对简单,计算效率较高,在一定程度上能够处理非线性问题。

      • 缺点

        :只适用于弱非线性系统,线性化过程可能引入较大误差,尤其是在强非线性情况下;对模型误差和噪声统计特性敏感。

      三、无迹卡尔曼滤波(UKF)

      1. UKF 的基本思想

      UKF 是一种改进的非线性滤波方法,它不通过线性化非线性函数,而是使用一组精心选择的采样点(称为 sigma 点)来表示状态分布。这些 sigma 点能够精确地表示状态分布的均值和协方差,从而更准确地捕捉非线性变换后的概率分布。

      2. UKF 的关键步骤

      图片

      图片

        3. UKF 的优缺点

        • 优点

          :避免了线性化误差,对强非线性系统的估计精度更高;不需要计算雅可比矩阵,实现相对简单;能够更好地处理非高斯噪声。

        • 缺点

          :计算复杂度较高,尤其是状态维度较大时;sigma 点的选择和权重计算需要调整多个参数。

        四、粒子滤波(PF)

        1. 粒子滤波的基本思想

        粒子滤波是一种基于蒙特卡洛方法的非线性滤波技术,它使用一组随机样本(粒子)及其权重来表示状态的后验概率分布。与 EKF 和 UKF 不同,粒子滤波不假设状态分布是高斯的,因此能够处理任意非线性、非高斯系统。

        2. 粒子滤波的关键步骤

        图片

          3. 粒子滤波的优缺点

          • 优点

            :适用于任意非线性、非高斯系统;能够精确表示复杂的概率分布;实现相对简单,不需要计算雅可比矩阵或 sigma 点。

          • 缺点

            :计算复杂度高,需要大量粒子才能获得准确的估计;粒子退化问题可能导致滤波性能下降;当状态空间维度较高时,粒子数需要呈指数增长才能保证精度。

          五、EKF、UKF 和粒子滤波的比较

          1. 适用场景比较

          • EKF

            :适用于弱非线性系统,状态和观测噪声近似高斯分布的情况。计算效率较高,是处理中等非线性问题的常用方法。

          • UKF

            :适用于强非线性系统,但噪声仍为高斯分布的情况。相比 EKF,UKF 能够更准确地捕捉非线性变换后的概率分布,估计精度更高。

          • 粒子滤波

            :适用于任意非线性、非高斯系统,尤其是状态分布复杂或噪声非高斯的情况。当系统具有多峰分布或高度非线性时,粒子滤波是首选方法。

          3. 选择建议

          • 当系统非线性程度较低且噪声近似高斯分布时,优先选择 EKF。

          • 当系统非线性程度较高但噪声仍为高斯分布时,选择 UKF。

          • 当系统具有强非线性、非高斯噪声或复杂状态分布时,选择粒子滤波。

          • 当计算资源有限时,应避免使用粒子滤波,尤其是高维状态空间的情况。

          六、应用案例

          1. 目标跟踪

          在目标跟踪问题中,状态通常包括目标的位置和速度,观测可能来自雷达或相机等传感器。对于非线性运动模型(如转弯模型)和非线性观测模型(如角度测量),UKF 和粒子滤波通常能提供比 EKF 更准确的跟踪结果。粒子滤波在处理杂波环境和多目标跟踪时表现尤为出色。

          2. 机器人定位与建图(SLAM)

          在 SLAM 问题中,机器人需要同时估计自身位置和环境地图。EKF-SLAM 是早期常用的方法,但它存在线性化误差和计算复杂度高的问题。UKF-SLAM 能够提供更准确的估计,而粒子滤波方法(如 FastSLAM)则能够处理非高斯分布和复杂环境。

          3. 导航系统

          在惯性导航系统中,EKF 常用于融合 GPS 和惯性测量单元(IMU)的数据。当系统非线性程度较高时(如高速机动情况),UKF 或粒子滤波可能更合适。粒子滤波在 GPS 信号丢失或受到严重干扰的场景中表现出色。

          七、总结与展望

          EKF、UKF 和粒子滤波是状态估计领域的三种重要方法,各自适用于不同的应用场景。EKF 因其简单高效而被广泛应用,UKF 在处理强非线性问题时提供了更高的精度,而粒子滤波则具有最广泛的适用性。

          未来的研究方向包括:

          1. 开发更高效的粒子滤波算法,如基于重要性采样和马尔可夫链蒙特卡洛(MCMC)的方法,以减少所需粒子数。

          2. 探索混合滤波方法,结合 UKF 和粒子滤波的优点,提高在复杂环境下的性能。

          3. 研究深度学习与状态估计的结合,利用神经网络学习复杂系统的动态模型和观测模型。

          4. 将状态估计方法应用于新兴领域,如自动驾驶、无人机群控制和物联网。

          ⛳️ 运行结果

          图片

          图片

          图片

          图片

          图片

          🔗 参考文献

          [1] 张应博,王法胜,杨俊生.基于混合卡尔曼粒子滤波算法的期权定价方法[C]//2009年中国智能自动化会议论文集(第二分册).2009.DOI:ConferenceArticle/5aa00a5cc095d722206377db.

          [2] 于洪波,王国宏,孙芸,等.一种融合UKF和EKF的粒子滤波状态估计算法[J].系统工程与电子技术, 2013, 35(7):5.DOI:10.3969/j.issn.1001-506X.2013.07.4.

          [3] 乔相伟.基于四元数非线性滤波的飞行器姿态确定算法研究[D].哈尔滨工程大学[2025-05-29].DOI:CNKI:CDMD:1.1013.172099.

          📣 部分代码

          🎈 部分理论引用网络文献,若有侵权联系博主删除

           👇 关注我领取海量matlab电子书和数学建模资料 

          🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

          🌈 各类智能优化算法改进及应用
          生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
          🌈 机器学习和深度学习时序、回归、分类、聚类和降维

          2.1 bp时序、回归预测和分类

          2.2 ENS声神经网络时序、回归预测和分类

          2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

          2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

          2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
          2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

          2.7 ELMAN递归神经网络时序、回归\预测和分类

          2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

          2.9 RBF径向基神经网络时序、回归预测和分类

          2.10 DBN深度置信网络时序、回归预测和分类
          2.11 FNN模糊神经网络时序、回归预测
          2.12 RF随机森林时序、回归预测和分类
          2.13 BLS宽度学习时序、回归预测和分类
          2.14 PNN脉冲神经网络分类
          2.15 模糊小波神经网络预测和分类
          2.16 时序、回归预测和分类
          2.17 时序、回归预测预测和分类
          2.18 XGBOOST集成学习时序、回归预测预测和分类
          评论
          添加红包

          请填写红包祝福语或标题

          红包个数最小为10个

          红包金额最低5元

          当前余额3.43前往充值 >
          需支付:10.00
          成就一亿技术人!
          领取后你会自动成为博主和红包主的粉丝 规则
          hope_wisdom
          发出的红包

          打赏作者

          matlab科研助手

          你的鼓励将是我创作的最大动力

          ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
          扫码支付:¥1
          获取中
          扫码支付

          您的余额不足,请更换扫码支付或充值

          打赏作者

          实付
          使用余额支付
          点击重新获取
          扫码支付
          钱包余额 0

          抵扣说明:

          1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
          2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

          余额充值