【发表时间】2024.03
【英文标题】MLDT: Multi-Level Decomposition for Complex Long-Horizon Robotic Task Planning with Open-Source Large Language Model
【会议期刊】DASFAA-2024
【原文链接】https://arxiv.org/pdf/2403.18760
【论文代码】https://github.com/wuyike2000/MLDT
【声明】本文是本人根据原论文进行翻译,有些地方加上了自己的理解,有些专有名词用了最常用的译法,时间匆忙,如有遗漏及错误,望各位包涵并指正。
摘要——在数据驱动的人工智能技术领域,开源大语言模型(LLMs)在机器人任务规划中的应用是一个重要的里程碑。近期基于开源大语言模型的机器人任务规划方法通常利用大量的任务规划数据集来提升模型的规划能力。虽然这些方法展现出了一定的前景,但它们在处理复杂长时任务时存在困难,因为这类任务需要理解更多的上下文信息并生成更长的动作序列。本文提出多层次分解任务规划方法(MLDT)来解决这一局限性。该方法创新性地在目标级、任务级和动作级对任务进行分解,以应对复杂长时任务带来的挑战。为了增强开源大语言模型的规划能力,我们引入了一种目标敏感语料库生成方法来创建高质量的训练数据,并对生成的语料库进行指令微调。由于现有数据集的复杂度不够高,我们构建了一个更具挑战性的数据集 LongTasks,专门用于评估在复杂长时任务上的规划能力。我们在 VirtualHome 中的四个数据集上使用多种大语言模型对我们的方法进行评估。结果表明,该方法显著提升了机器人任务规划的性能,展示了 MLDT 在克服现有基于开源大语言模型方法的局限性方面的有效性,以及在复杂现实场景中的实用性。
关键词:任务规划;大语言模型;多层次分解
-
一句话:提出 MLDT 方法,通过多层次任务分解、指令微调及构建新数据集,提升开源大语言模型在复杂长时机器人任务规划中的性能。实验证明其有效性,为开源大模型在机器人领域的应用提供新方向。
-
研究背景:数据驱动的人工智能技术在机器人任务规划中备受关注,大语言模型(LLMs)的出现推动了