ChromaDB 向量库优化技巧实战

chroma 一步步使用

安装

# 安装chromadb
pip install chromadb,sentence_transformers

# 不启动服务会出现sock.connect(sa)TimeoutError: timed out
chroma run

服务启动后,您将看到类似以下输出:
在这里插入图片描述

建立连接

部署完成后,需要建立与Chroma服务的连接:

import chromadb

# 创建了临时客户端。程序终止时,您提取的任何数据都会丢失
client = chromadb.Client()

创建向量集合

chroma连接若直接创建集合(“Collection”(集合)是存储向量的基本单位,类似于关系型数据库中的表),会使用内置的嵌入模型all-MiniLM-L6-v2

# 首先导入embedding模型
from chromadb.utils import embedding_functions



collection = chroma_client.create_collection(name="my_collection")
collection.add(
    documents=[
        "关于深度学习技术的文档",
        "关于的爱情小说文档"
    ],
    ids=["id1", "id2"]
)
print(collection)

chroma默认使用欧氏距离计算向量相似度

查询文档

Chroma提供多种查询方式,满足不同场景需求:

1. 基于ID查询

当你知道确切的文档ID时,可以直接查询:

# 根据ID获取文档
result = collection.get(
    ids=["id1"]
)
2. 语义向量检索

RAG系统的核心功能是语义检索,基于查询与文档的语义相似度:

# 语义检索
# Chroma 默认会返回 10 条结果。这里我们只添加了 2 个文档,因此我们设置n_results=2
results = collection.query(
    query_texts=["如何使用向量数据库?"],
    n_results=2
)
print(results)

工程中优化

混合检索

Chroma还支持将全文匹配与向量检索结合:

# 全文匹配 + 向量检索
results = collection.query(
    query_texts=["检索技术的应用"],
    n_results=2,
    where_document={"$contains": "检索"},  # 文档必须包含"检索"一词
    include=["documents", "metadatas"]
)

Chroma支持将向量检索与元数据过滤结合,实现更精准的查询:

# 元数据过滤 + 向量检索
results = collection.query(
    query_texts=["大语言模型的应用"],
    n_results=2,
    where={"topic": "llm"},  # 仅检索topic为llm的文档
    include=["documents", "metadatas"]
)

元数据过滤支持多种操作符:

  • 相等:{"field": value}
  • 不等:{"field": {"$ne": value}}
  • 大于/小于:{"field": {"$gt": value}}{"field": {"$lt": value}}
  • 范围:{"field": {"$gte": min_value, "$lte": max_value}}
  • 复合条件:{"$and": [condition1, condition2]}
调参:索引与性能优化

Chroma默认使用HNSW(分层可导航小世界图)作为向量索引算法,无需手动创建索引。但你可以通过元数据调整索引参数:

# 创建集合时设置HNSW参数
collection = client.create_collection(
    name="optimized_collection",
    embedding_function=embedding_func,
    metadata={
        "hnsw:space": "cosine",       # 相似度度量方式
        "hnsw:M": 16,                 # 每个节点的最大连接数
        "hnsw:ef_construction": 200,  # 构建索引时的搜索宽度
        "hnsw:ef": 100                # 查询时的搜索宽度
    }
)

关键参数解释:

  • M:控制图的连接度,值越大精度越高但内存消耗也越大
  • ef_construction:影响索引质量,值越大精度越高但构建速度越慢
  • ef:影响查询精度和速度,值越大召回率越高但查询速度越慢
<think>好的,我现在需要帮助用户查找关于Traefik插件的使用说明、配置和示例。首先,用户提到他们想了解与Traefik插件相关的信息,特别是使用说明、配置和示例。根据用户提供的引用内容,我需要整理这些信息,并按照用户的要求进行结构化回答。 首先,我要回顾用户提供的引用内容。引用[1]提到了在静态配置文件中添加插件的配置示例,引用[3]和[5]介绍了GitHub上的示例插件demo,说明插件是通过Yaegi动态执行的,并提到了开发指南。引用[4]提到了使用Helm chart部署Traefik,这可能与插件的安装有关。引用[2]可能是一个Terraform的示例,但具体内容不明确,暂时可能用不上。 接下来,我需要确定用户的需求:他们需要知道如何配置和使用Traefik插件,包括具体的步骤和示例。根据引用内容,可以分步骤说明配置方法,比如静态配置文件中的设置,以及插件的开发或使用现有插件的步骤。可能还需要提到动态加载和注意事项,如实验性功能、版本兼容性等。 需要确保回答符合用户的要求,结构清晰,分步骤说明。同时,要引用提供的引用内容,正确标注引用标识。例如,引用[1]中的配置示例,引用[3]关于GitHub仓库的信息,引用[4]提到的Helm安装方法,以及引用[5]的项目介绍部分。 另外,用户可能对插件的实际应用场景和如何开发自己的插件感兴趣,所以可能需要包含这些信息。还要生成相关问题,如如何开发自定义插件、动态加载机制、性能影响等。 需要注意的是,用户提供的引用中有部分内容可能不直接相关,比如引用[2]的Terraform示例,但如果没有更相关的信息,可以暂时忽略。确保回答中的引用准确对应到相关的部分。 总结回答结构: 1. 插件配置步骤,包括静态配置文件示例和Helm安装。 2. 使用现有插件的步骤,比如demo插件的安装。 3. 开发自定义插件的基本流程。 4. 注意事项,如实验性功能、版本要求等。 5. 相关问题部分,生成相关问题。 现在需要将这些信息整合成自然的中文回答,正确引用来源,并确保LaTeX格式符合要求,虽然用户的问题可能不涉及数学公式,但如果有变量或代码,需要使用正确的格式。例如,配置示例中的代码块需要用反引号包裹,并注明语言类型。 检查是否有遗漏的信息,比如引用[3]提到的Yaegi解释器,可能需要解释动态加载机制。同时,引用[5]提到插件是扩展Traefik功能的强大工具,可以用于流量管理,这部分可以在应用场景中提及。 最后,生成的相关问题需要与Traefik插件的使用、开发、配置相关,确保问题有针对性,能够引导用户进一步探索。</think>### Traefik 插件使用说明与配置示例 #### 1. 插件配置基础步骤 Traefik 插件通过静态配置文件或动态加载实现。以下为静态配置示例(需在 Traefik 的 YAML 配置文件中添加): ```yaml experimental: localPlugins: example: moduleName: github.com/traefik/plugindemo # 插件模块路径[^1] ``` 此配置声明了一个名为 `example` 的本地插件,指向 GitHub 上的示例仓库[^3]。 若使用 Helm 安装 Traefik,需在 `values.yaml` 中启用插件支持: ```yaml experimental: plugins: enabled: true # 启用插件功能[^4] ``` #### 2. 使用现有插件(以 demo 插件为例) 1. **安装插件** 通过修改 Traefik 部署配置,将插件代码编译到 Traefik 二进制文件中,或通过动态加载(需 Yaegi 支持)。 2. **配置路由规则** 在 `IngressRoute` 中引用插件: ```yaml apiVersion: traefik.io/v1alpha1 kind: Middleware metadata: name: demo-plugin spec: plugin: example: # 插件名称 headerName: "X-Custom-Header" headerValue: "Hello from Plugin" ``` #### 3. 开发自定义插件 1. **代码结构** 遵循 Traefik 插件接口规范,实现 `New` 初始化方法和 `Handle` 请求处理逻辑[^3]。 2. **动态加载** 利用 Yaegi 解释器实时加载插件(无需重启 Traefik): ```go // 示例插件逻辑 func New(ctx context.Context, config *Configuration) (http.Handler, error) { return &demoPlugin{config}, nil } ``` #### 4. 注意事项 - **实验性功能**:插件功能标记为实验性,需在配置中显式启用[^4]。 - **版本兼容性**:确认 Traefik 版本支持插件(建议 v2.3+)[^4]。 - **安全限制**:动态加载插件需注意代码安全性,建议审核第三方插件[^5]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一切皆有可能!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值