【ShaderToy】跳动的心

1649 篇文章 12 订阅
1623 篇文章 23 订阅

http://blog.csdn.net/candycat1992/article/details/44040273



写在前面


注:如果你还不了解ShaderToy,请看开篇


作为ShaderToy系列的第一篇,我们先来点简单的。下面是效果:

(CSDN目前不能传gif文件了,暂时空缺,可以看下面的原shader效果,是一样的)


原Shader地址:https://www.shadertoy.com/view/XsfGRn


代码


我们使用了之前的开篇中的基础模板。这里仅仅给出main函数的代码:

  1.  vec4 main(vec2 fragCoord) {  
  2.     vec2 p = (2.0*fragCoord.xy-iResolution.xy)/min(iResolution.y,iResolution.x);  
  3.   
  4.     p.y -= 0.25;  
  5.       
  6.     // background color  
  7.     vec3 bcol = vec3(1.0,0.8,0.7-0.07*p.y)*(1.0-0.25*length(p));  
  8.       
  9.     // animate  
  10.     float tt = mod(iGlobalTime,1.5)/1.5;  
  11.     float ss = pow(tt,.2)*0.5 + 0.5;  
  12.     ss = 1.0 + ss*0.5*sin(tt*6.2831*3.0 + p.y*0.5)*exp(-tt*4.0);  
  13.     p *= vec2(0.5,1.5) + ss*vec2(0.5,-0.5);  
  14.       
  15.       
  16.     // shape  
  17.     float a = atan(p.x,p.y)/3.141593;  
  18.     float r = length(p);  
  19.     float h = abs(a);  
  20.     float d = (13.0*h - 22.0*h*h + 10.0*h*h*h)/(6.0-5.0*h);  
  21.       
  22.     // color  
  23.     float s = 1.0-0.5*clamp(r/d,0.0,1.0);  
  24.     s = 0.75 + 0.75*p.x;  
  25.     s *= 1.0-0.25*r;  
  26.     s = 0.5 + 0.6*s;  
  27.     s *= 0.5+0.5*pow( 1.0-clamp(r/d, 0.0, 1.0 ), 0.1 );  
  28.     vec3 hcol = vec3(1.0,0.5*r,0.3)*s;  
  29.       
  30.     vec3 col = mix( bcol, hcol, smoothstep( -0.01, 0.01, d-r) );  
  31.       
  32.     return vec4(col,1.0);  
  33. }  


代码很短,但包含了一些数学公式的计算,不懂的就会觉得很难理解。我们把上面代码拆分成两个部分:背景颜色(bcol),心的颜色(hcol,包含了心的跳动):

 




背景颜色


这部分比较简单。这个背景实际上是一个某点为中心,中心最亮、向边缘逐渐变暗的背景,比较常见。但通常我们都是用美术给的纹理直接用,现在我们用纯数学计算来看看如何实现它!


首先,我们在看一个重要变量的计算——p。

  1. vec2 p = (2.0*fragCoord.xy-iResolution.xy)/min(iResolution.y,iResolution.x);  
  2.   
  3. .y -= 0.25;  

第一行中,代码计算了每一个像素点和屏幕中心点之间的方向向量。我们以图为例说明。


在p.y减去0.25之前,中心点即是屏幕中心,代码先计算了每个像素点到中心的方向(如左图),然后再除以屏幕的高度(或宽度)(如右图)。图例如下:

 


这样的计算结果可以保存每个像素点距离中心的方向、远近等信息。


在这个基础上,我们还可以移动中心点的位置来控制渐变。代码中是将y减去了0.25,即将中心点向上移动了屏幕高度的0.25/2=0.125个单位。

 


我们可以通过更改代码来看到这样的效果:

  1. vec3 bcol = vec3(1.0,0.8,0.7-0.07*p.y)*(1.0-length(p));  
  1. return vec4(bcol,1.0);  

 
 

以上步骤即可得到屏幕上每一个点到中心点的方向、相对距离等信息。接下来,我们就可以根据这些信息计算背景颜色了:

  1. // background color  
  2. vec3 bcol = vec3(1.0,0.8,0.7-0.07*p.y)*(1.0-0.25*length(p));  

bcol可以认为是一个主背景颜色和像素距离中心点远近值的乘积。其中, (1.0-0.25*length(p)) 是我们对上一步得到的距离进行进一步计算,由于 length(p) 的值可能大于1(如果屏幕x轴大于y轴,那么p的x方向的绝对值有些会大于1;反之,如果屏幕y轴大于x轴,那么p的y方向的绝对值有些会大于1),因此,我们需要在 length ( p ) 的基础上乘以系数0.25。当然,0.25是经验值,我们可以把这个参数做成shader的一个属性,供调节。 vec3(1.0,0.8,0.7-0.07*p.y) 中, vec3 ( 1.0 , 0.8 , 0.7) 是背景主色调,我们同样可以把它做成一个shader属性。后面会给出。而在B通道上减去 0.07 * p . y 可以当成是一个轻微的效果修正,即在y方向上,可以有些许颜色变化,其中0.07也是一个经验值,可以更改。



心的绘制


心形的计算代码很简单。这里画心的原理是,判断该像素点是否在心的内部,如果在就是用心的颜色绘制,否则使用背景颜色绘制:

  1. vec3 col = mix( bcol, hcol, smoothstep( -0.01, 0.01, d-r) );  

其中我们已经讲过了bcol的计算。这里我们先忽略hcol,后面再讲,我们这里可以把它当成是一个已知的心的颜色。 smoothstep( -0.010.01d-r) 决定了我们是使用背景颜色还是心的颜色。当它值为0时,表示该像素不在心形内,则使用背景颜色,返回1时,则使用心的颜色;否则,就在背景颜色和心的颜色之间进行插值。而 smoothstep( -0.010.01d-r) 的返回值范围就是[0, 1]。 smoothstep 是CG函数,当第三个参数比-0.01小时,返回0,比0.01大时返回1,如果在-0.01和0.01之间,则返回0到1之间的值。这里, d-r 其实已经表明该像素是否在心形内(后面会讲原因):若 d-r  > 0,则在心形内,若 d-r  < 0,则在心形外。那么为什么这里要使用smoothstep呢?其实是为了使心形的边缘模糊化,更美观。下面左图是模糊后的结果,而右图是没有模糊的结果:

 


smoothstep控制模糊效果的原理在于,在心形的边界部分,d-r的值在正负0左右波动,我们可以通过添加一个[-0.01, 0.01]范围内的平缓过渡,来平缓d-r的值在正负交界处的突变。当然,我们可以更改0.01的值,来控制模糊范围。例如,如果我们改成0.05,那么效果如下:



重要mix+smoothstep的组合,是实现这种模糊效果的很常见的搭配!


心的形状


下面,我们来解释,为什么d-r表示该像素是否在心形内。相关代码如下:

  1. // shape  
  2. float a = atan(p.x,p.y)/3.141593;  
  3. float r = length(p);  
  4. float h = abs(a);  
  5. float d = (13.0*h - 22.0*h*h + 10.0*h*h*h)/(6.0-5.0*h);  

我们先来看a的含义。它是该像素对应方向的反正切值和π相除的结果。 atan 对应CG中的 atan2 函数,它的值域为[-π, π]。我们可以理解为,它返回的是X轴旋转到该方向所需要转过的角度(不超过正负180°)。因此,a得到的其实是一个范围在[-1.0, 1.0]之间的浮点值。这里注意计算反正切时x和y方向对调了,这是因为我们的心形是竖立着的。我们用图像来理解a的含义。下图中,每条直线上的像素点得到的a都是相同的,我们用黄点表示,黄点距离远点的远近,表示了a的大小。我只画了一侧是因为另一侧的a值为负。



这样,我们就可以通过判断该像素对应方向的长度r和a的差来判断该像素是否在心形内了。如果我们以a-r为依据而非d-r,我们会得到下面的结果:



可以看出,心形只有一侧,而且看起来比最终效果要胖了许多。这就是h和d的意义。h对a取绝对值,使得a的负值区域同样可以得到半个心形。而d对h进行修正,使用的函数表达式可以根据代码看出来,至于为什么是这个函数,大家都膜拜数学的魅力好啦。。。



心的颜色


心的颜色这里有点难理解。我们把它拆成两部分:

  1. vec3 hcol = vec3(1.0,0.5*r,0.3)*s;  

一部分是 vec3(1.0,0.5*r,0.3) ,一部分是 s vec3 ( 1.0 , 0.5 * r , 0.3 ) 完成的是一个简单的由中心向外渐变的颜色:



这个渐变色没有考虑心形的约束。而s的计算则相对复杂。它用于修正上面的渐变颜色,使得在心形内外的颜色有所区别。vec3 hcol = vec3(1.0,0.5,0.3)*s;的结果如下:



s的计算如下:

  1. // color  
  2. float s = 1.0-0.5*clamp(r/d,0.0,1.0);  
  3. s = 0.75 + 0.75*p.x;  
  4. s *= 1.0-0.25*r;  
  5. s = 0.5 + 0.6*s;  
  6. s *= 0.5+0.5*pow( 1.0-clamp(r/d, 0.0, 1.0 ), 0.1 );  

其实源码中新一行是没用的,因为第二行直接赋值了。我用图例来表示每一步的变化。我们先把所有的计算注释掉,然后依次取消注释来看看发生了什么变化。图片如下:

   


从图片我们可以直观的看出,第一行根据p的x方向来得到一个在x方向上的渐变,第二行在此基础上添加了根据p的距离来产生的渐变,虽然不明显但可以看出新的渐变有了弧形,第三行则是使用类似半兰伯特的方法,增亮了左侧暗部区域,而最后一行则关键的分出了心形内外的区域颜色。


重要:最后一步中,使用pow+clamp分割区域的方法也是我们值得借鉴的地方。



心的跳动


动画的部分肯定离不开数学函数图像的帮助。我们来看这里用到的计算:

  1. // animate  
  2. float tt = mod(iGlobalTime,1.5)/1.5;  
  3. float ss = pow(tt,.2)*0.5 + 0.5;  
  4. ss = 1.0 + ss*0.5*sin(tt*6.2831*3.0 + p.y*0.5)*exp(-tt*4.0);  
  5. p *= vec2(0.5,1.5) + ss*vec2(0.5,-0.5);  

第一行计算了周期时间tt,这里的周期是1.5秒,当然我们可以自己改动。


下面ss的计算就是利用函数图像来模拟动画效果。它的函数图像如图所示(这里去掉了p.y的影响部分):



如图,这个函数是一个在y轴上、数值1附近跳动的函数。


最后一行,p *= vec2(0.5,1.5) + ss*vec2(0.5,-0.5);,我们对x和y方向使用了的参数,是因为我们想要心是在水平方向上收缩、竖直方向上拉伸的动画效果,当然我们也可以修改它。



Shader增强版


我将一些参数设为shader的属性,以便在面板中调节。这些属性有:背景颜色,心的颜色,背景的离散洗漱,心的边缘模糊洗漱,以及跳动的时间周期。

  1. Shader "shadertoy/Heart" {  
  2.     Properties {  
  3.         _BackgroundColor ("Background Color", Color) = (1.0, 0.8, 0.7, 1.0)  
  4.         _HeartColor ("Heart Color", Color) = (1.0, 0.5, 0.3, 1.0)  
  5.         _Eccentricity ("Eccentricity", Range(0, 0.5)) = 0.25  
  6.         _Blur ("Edge Blur", Range(0, 0.3)) = 0.01  
  7.         _Duration ("Duration", Range(0.5, 10.0)) = 1.5  
  8.     }  
  9.       
  10.     CGINCLUDE  
  11.       
  12.     #include "UnityCG.cginc"    
  13.     #pragma target 3.0    
  14.       
  15.     #define vec2 float2  
  16.     #define vec3 float3  
  17.     #define vec4 float4  
  18.     #define mat2 float2x2  
  19.     #define iGlobalTime _Time.y  
  20.     #define mod fmod  
  21.     #define mix lerp  
  22.     #define atan atan2  
  23.     #define fract frac   
  24.     #define texture2D tex2D  
  25.     // 屏幕的尺寸  
  26.     #define iResolution _ScreenParams  
  27.     // 屏幕中的坐标,以pixel为单位  
  28.     #define gl_FragCoord ((_iParam.srcPos.xy/_iParam.srcPos.w)*_ScreenParams.xy)    
  29.                    
  30.     vec4 _BackgroundColor;  
  31.     vec4 _HeartColor;  
  32.     float _Eccentricity;  
  33.     float _Blur;  
  34.     float _Duration;  
  35.       
  36.     struct vertOut {        
  37.         float4 pos : SV_POSITION;        
  38.         float4 srcPos : TEXCOORD0;      
  39.      };      
  40.       
  41.      vertOut vert(appdata_base v) {      
  42.          vertOut o;      
  43.          o.pos = mul (UNITY_MATRIX_MVP, v.vertex);  
  44.          o.srcPos = ComputeScreenPos(o.pos);     
  45.          return o;      
  46.      }  
  47.        
  48.      vec4 main(vec2 fragCoord);  
  49.           
  50.      fixed4 frag(vertOut _iParam) : COLOR0 {    
  51.         vec2 fragCoord = gl_FragCoord;  
  52.         return main(fragCoord);  
  53.      }    
  54.       
  55.      vec4 main(vec2 fragCoord) {  
  56.         vec2 p = (2.0*fragCoord.xy-iResolution.xy)/min(iResolution.y,iResolution.x);  
  57.       
  58.         p.y -= 0.25;  
  59.           
  60.         // background color  
  61.         vec3 bcol = vec3(1.0,0.8,0.7-0.07*p.y)*(1.0-0.25*length(p));  
  62.         bcol = _BackgroundColor.xyz * (1.0-_Eccentricity*length(p));  
  63.           
  64.         // animate  
  65.         float tt = mod(iGlobalTime,1.5)/1.5;  
  66.         tt = mod(iGlobalTime,_Duration)/_Duration;  
  67.         float ss = pow(tt,.2)*0.5 + 0.5;  
  68.         ss = 1.0 + ss*0.5*sin(tt*6.2831*3.0 + p.y*0.5)*exp(-tt*4.0);  
  69.         p *= vec2(0.5,1.5) + ss*vec2(0.5,-0.5);  
  70.           
  71.         // shape  
  72.         float a = atan(p.x,p.y)/3.141593;  
  73.         float r = length(p);  
  74.         float h = abs(a);  
  75.         float d = (13.0*h - 22.0*h*h + 10.0*h*h*h)/(6.0-5.0*h);  
  76.           
  77.         // color  
  78.         float s = 1.0-0.5*clamp(r/d,0.0,1.0);  
  79.         s = 0.75 + 0.75*p.x;  
  80.         s *= 1.0-0.25*r;  
  81.         s = 0.5 + 0.6*s;  
  82.         s *= 0.5+0.5*pow( 1.0-clamp(r/d, 0.0, 1.0 ), 0.1 );  
  83.         vec3 hcol = vec3(1.0,0.5*r,0.3)*s;  
  84.         hcol = _HeartColor.xyz *s;  
  85.           
  86.         vec3 col = mix( bcol, hcol, smoothstep( -0.01, 0.01, d - r) );  
  87.         col = mix( bcol, hcol, smoothstep( -_Blur, _Blur, d - r) );  
  88.           
  89.         return vec4(col, 1.0);  
  90.     }  
  91.       
  92.     ENDCG  
  93.       
  94.     SubShader {  
  95.         Pass {  
  96.             CGPROGRAM  
  97.               
  98.             #pragma vertex vert  
  99.             #pragma fragment frag  
  100.             #pragma fragmentoption ARB_precision_hint_fastest     
  101.               
  102.             ENDCG  
  103.         }  
  104.     }   
  105.     FallBack "Diffuse"  
  106. }  

例如我们可以得到下面的效果:



当我们把动画速度放得很慢后,动画效果像一个装了水的心在弹动一样,也很有趣。


写在最后


ShaderToy里面大部分shader是不可以直接拿来用的,因为它的很多效果完全靠数学计算,消耗很大。当然,这也正跟它的名字一样,玩具嘛,数学+shader=牛人的玩具~


从这篇还有之前的几篇可以看出数学在shader中的重要性。几乎所有的动画都是依靠数学公式来完成的。数学提供给我们很多变化,像这里心的跳动,我们也完全可以使用其他跳动函数来模拟。我们还可以看出来,shader中很多也是经验公式,例如里面的很多参数,我们也是都可以自己修改的。


数学不好真的是硬伤,哎。还是那句话,多看看长长见识总没坏处。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值